Publications by authors named "Pawel Rodziewicz"

We investigate the adsorption of a chemical warfare agent, namely sulfur mustard (SM), on clean and water-saturated ZnO(101¯0) surfaces using density functional theory calculations to understand the first step of its efficient neutralization to less toxic chemical compounds. We determine the relative stability of various SM conformers adsorbed at different sites on both ZnO surfaces. The unique hydrogen bonding patterns obtained for the idealized clean and the more realistic water-saturated ZnO surface are analyzed and their influence on the stability of the SM@ZnO structures is demonstrated.

View Article and Find Full Text PDF

Tetrahydrofuran (THF) is a widely used chemical compound, in particular as a solvent in organic and inorganic synthesis. The THF molecule has also an interesting property, namely, undergoes pseudorotation, similar to the case of the cyclopentane. Low energy difference between the envelope (C symmetry) and twisted (C symmetry) conformations of the THF molecule leads to the interconversion between the two conformers.

View Article and Find Full Text PDF

The molecular interactions between the commonly used solvent tetrahydrofuran (THF) and single-walled carbon nanotubes (SWCNT) are studied using density functional theory calculations and Car-Parrinello molecular dynamics simulations. The competitive interplay between THF-THF and THF-SWCNT interactions via C-H⋯O and C-H⋯π hydrogen bonds is analyzed in detail. The binding energies for different global and local energy minima configurations of THF monomers, dimers, trimers, and tetramers on SWCNT(10,0) were determined.

View Article and Find Full Text PDF

Cannabinoids are terpenophenolic compounds produced by Cannabis sativa L., which accumulate in storage cavities of glandular trichomes as a part of the exudates. We investigated if tetrahydrocannabinolic acid synthase and cannabidiolic acid synthase, which are involved in the last step of cannabinoid biosynthesis, are also secreted into Cannabis trichome exudates.

View Article and Find Full Text PDF
Article Synopsis
  • Drought severely affects crop yields, prompting the need for better understanding of how plants respond to drought stress.
  • Researchers studied barley by subjecting recombinant inbred lines and their parent genotypes to drought conditions, focusing on leaf and root tissues.
  • The analysis identified specific proteins responsive to drought that could aid in marker-assisted breeding, showing significant interactions between genotype and environment.
View Article and Find Full Text PDF

A wide range of compounds that occur in the genus Hypericum are listed as effective drugs of natural origin. The main biological activities of several Hypericum representatives are due to the presence of naphthodianthrones, phloroglucinols, and other diverse groups of secondary metabolites that synergistically contribute to their therapeutic effects. The regulation of biosynthesis of hypericin as the key bioactive naphthodianthrone remains uncertain.

View Article and Find Full Text PDF

The solubility-permeability relationship of active pharmaceutical ingredients determines the efficacy of their usage. Diclofenac (DCL), which is a widely used nonsteroidal anti-inflammatory drug, is characterized by extremely good membrane permeability, but low water solubility limiting drug effectiveness. The present research focuses on the fundamental explanation of this limitation using the combination of ab initio and classical molecular dynamics simulations of different ionic forms of DCL in water, namely, ionized, un-ionized and the mixture of them both.

View Article and Find Full Text PDF

Adjuvant chemo- and/or radiotherapy is applied in a majority of patients treated for early stage breast cancer, although only a small percentage of these individuals are at high risk of metastasis or recurrence. Hence, knowledge of the biomarkers associated with the risk of disease progression might facilitate the planning of an optimal therapy and protect many patients from the toxicity of unnecessary treatment. In this study, we characterized the serum proteome of patients diagnosed with early-stage breast cancer, exhibiting either no evidence of disease five years after the end of therapy or suffering from metastasis, relapse or a second cancer during the corresponding follow-up.

View Article and Find Full Text PDF

In this study, proteomic and metabolomic changes in leaves and roots of two barley (Hordeum vulgare L.) genotypes, with contrasting drought tolerance, subjected to water deficit were investigated. Our two-dimensional electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF and MALDI-TOF/TOF) analyses revealed 121 drought-responsive proteins in leaves and 182 in roots of both genotypes.

View Article and Find Full Text PDF

The FTIR spectra of fluoroform trapped in argon and nitrogen matrixes are studied at T ∼ 10-30 K. The bands of E symmetry show the splitting effect in a nitrogen matrix, which is absent in an argon matrix. The effect is the most prominent in the case of the ν4 CH bending vibration.

View Article and Find Full Text PDF

We used static DFT calculations to analyze, in detail, the intramolecular hydrogen bonds formed in low-molecular-weight polyethylene glycol (PEG) with two to five repeat subunits. Both red-shifted O-H⋅⋅⋅O and blue-shifting C-H⋅⋅⋅O hydrogen bonds, which control the structural flexibility of PEG, were detected. To estimate the strength of these hydrogen bonds, the quantum theory of atoms in molecules was used.

View Article and Find Full Text PDF

Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations.

View Article and Find Full Text PDF

Background: The gastric cancer is one of the most common and mortal cancer worldwide. The initial asymptomatic development and further nonspecific symptoms result in diagnosis at the advanced stage with poor prognosis. Yet, no clinically useful biomarkers are available for this malignancy, and invasive gastrointestinal endoscopy remains the only reliable option at the moment.

View Article and Find Full Text PDF

Covalent sidewall functionalisation of defective zigzag single-walled carbon nanotubes [SWCNTs(10,0)] with COOH groups is investigated by using DFT. Four types of point defects are considered: vacancy (V), divacancy [V (5-8-5), V (555-777)], adatom (AA) and Stone-Wales (SW). The energetic, structural, electronic and vibrational properties of these systems are analysed.

View Article and Find Full Text PDF

Ranitidine is a histamine H2-receptor antagonist that reduces gastric acid secretion. We studied the flexibility of the ranitidine molecule with the special focus on the network of diverse intramolecular hydrogen bonds: N-H⋯O, N-H⋯N, C-H⋯O, C-H⋯N and N-H⋯S. We performed static density functional theory calculations of global and local minima and analyzed their stability at finite temperature in the Car-Parrinello molecular dynamics simulations.

View Article and Find Full Text PDF

The aim of the present study was to perform comparative analysis of serum from patients with different stages of non-small cell lung cancer (NSCLC) using the three complementary proteomic approaches to identify proteome components associated with the progression of cancer. Serum samples were collected before any treatment from 200 patients with NSCLC, including 103 early stage, 64 locally advanced and 33 metastatic cancer samples, and from 200 donors without malignancy. The low-molecular-weight fraction of serum proteome was MALDI-profiled in all samples.

View Article and Find Full Text PDF

A reactant used globally in the production of polyurethane is the molecule 4,4'-methylene diphenyl diisocyanate (4,4'-MDI). The structural flexibility of 4,4'-MDI is one of the most important molecular properties influencing the polymerization process and this property was therefore modeled using density functional theory (DFT) calculations and Car-Parrinello molecular dynamics (MD) simulations. Global and local minima structures were found and confirmed by vibrational analysis.

View Article and Find Full Text PDF

The adsorption of fluoroform molecules on a hexagonal ice (0001) surface was studied using static density functional theory (DFT) calculations and Car-Parrinello molecular dynamics (CP-MD) simulations. Extending our previous work on isolated molecules we focus in the present study on the interplay between molecule-molecule and molecule-substrate interactions. Coverages of up to a full monolayer were modeled by introducing two, three and four fluoroform molecules per unit cell of the ice (0001) substrate.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, [Ru(C12H8N2)3](ClO4)2, contains one octahedrally coordinated Ru(II) cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions: two, denoted A and B, are located on the twofold axis while another, denoted C, is positioned in the proximity of the twofold screw axis. Perchlorate anions B and C are severely disordered. The occupancies of the two major conformers of anion B refined to 0.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, [Ru(C(15)H(11)N(3))(2)](ClO(4))(2)·0.5H(2)O, contains one ruthenium-terpiridine complex cation, two perchlorate anions and one half-mol-ecule of water. Face-to-face and face-to-edge π-stacking inter-actions between terpyridine units [centroid-centroid distances = 3.

View Article and Find Full Text PDF

For isolated fluoroform (F(3)CH) molecules adsorbed on a hexagonal ice (0001) surface the properties of blue- and red-shifting hydrogen bonds were studied using static density functional theory (DFT) calculations and Car-Parrinello molecular dynamics (CP-MD) simulations. A systematic search by starting from many initial configurations was performed to determine the lowest-energy structures of F(3)CH on the ice surface, and for the optimized geometries the vibrational frequencies were calculated. The local minima structures are analyzed in terms of their coordination to the surface, with special focus on identifying blue-shifting hydrogen bonds via their spectroscopic signature of an increased frequency of the C-H fundamental stretching vibration.

View Article and Find Full Text PDF

Medicago truncatula is a model species for the study of the unique secondary metabolism in legumes. LC/MS/MS analysis was used to identify and profile flavonoid glycoconjugates and free aglycones in leaves of M. truncatula (ecotype R108-1) infected with the fungal pathogen Phoma medicaginis.

View Article and Find Full Text PDF

Dimerization of formic acid has been simulated using ab initio molecular dynamics at conditions mimicking rare gas matrix isolation experiments. Aggregation product distributions and the corresponding reaction pathways have been studied as a function of temperature. At higher temperatures, the cyclic, C(2h) symmetric, global minimum structure A with two O-H.

View Article and Find Full Text PDF

Butanone side chains at arenes and hetarenes, efficiently introduced by a Heck-type reaction, are transformed to annulated thieno[3,2-b]thiophenes in a domino redox process under Willgerodt-Kindler conditions. A nucleophilic aromatic substitution with an intermediary thioenolate is a reasonable key step of this process.

View Article and Find Full Text PDF

The dimerization of formamide (FMA) has been investigated by matrix isolation spectroscopy, static ab initio calculations, and ab initio molecular dynamics (AIMD) simulations. Comparison of the experimental matrix IR spectra with the ab initio calculations reveals that two types of dimers A and C are predominantly formed, with two and one strong NH..

View Article and Find Full Text PDF