98%
921
2 minutes
20
Unlabelled: It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.
Implications: This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10962247.2015.1087892 | DOI Listing |
Circ Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.
Environ Sci Pollut Res Int
September 2025
Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
This study introduces a back filter installed at the end of the exhaust pipe of city buses. The impact of the metal type used in its construction on the absorption of suspended particles and the reduction of sulfides in diesel engine exhaust gases is investigated. The back filter is constructed from three metals: copper, zinc, and nickel.
View Article and Find Full Text PDFNature
September 2025
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
Smoke from extreme wildfires in Canada adversely affected air quality in many regions in 2023. Here we use satellite observations, machine learning and a chemical transport model to quantify global and regional PM (particulate matter less than 2.5 μm in diameter) exposure and human health impacts related to the 2023 Canadian wildfires.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
The potential of PM to cause lung cancer has been well established; however, evidence regarding which specific components are responsible remains limited. We investigated dissolved organic matter (DOM) in PM using high-resolution mass spectrometry (HRMS) and cellular DNA damage assays to elucidate molecular composition and sources of carcinogenic components. Our analysis revealed hundreds of genotoxic compounds, with condensed aromatic amines predominating in number, abundance, and contribution to overall genotoxicity.
View Article and Find Full Text PDFJ Invest Dermatol
September 2025
Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410008, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and
Psoriasis is a chronic, immune-mediated inflammatory skin disorder affecting approximately 100 million people worldwide. This study aimed to understand the global impact of psoriasis on health and economics over the past three decades. we analyzed trends in psoriasis cases, its effects on people's quality of life, and the associated costs.
View Article and Find Full Text PDF