Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of protein-rich enoki mushroom (Flammulina velutipes) biomass at 900 °C with carbon nanotubes as a conductive agent and inserting matrix. We found that various forms of nitrogen (nitrile, pyrrolic and graphitic) were incorporated into the carbon molecular skeleton of the product, which exhibited more excellent ORR electrocatalytic activity and better durability in alkaline medium than those in acidic medium. Remarkably, the ORR half-wave potential measured on our material was around 0.81 V in alkaline medium, slightly lower than that on the commercial 20 wt% Pt/C catalyst (0.86 V). Meanwhile, the ORR followed the desired 4-electron transfer mechanism involving the direct reduction pathway. The ORR performance was also markedly better than or at least comparable to the leading results in the literature based on biomass-derived carbon-based catalysts. Besides, we significantly proposed that the graphitic-nitrogen species that is most responsible for the ORR activity can function as the electrocatalytically active center for ORR, and the pyrrolic-nitrogen species can act as an effective promoter for ORR only. The results suggested a promising route based on economical and sustainable fungi biomass towards the large-scale production of valuable carbon nanomaterials as highly active and stable metal-free catalysts for ORR under alkaline conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr03828fDOI Listing

Publication Analysis

Top Keywords

orr
10
protein-rich enoki
8
enoki mushroom
8
nitrogen-doped carbon
8
carbon nanomaterial
8
oxygen reduction
8
reduction reaction
8
highly active
8
active stable
8
alkaline medium
8

Similar Publications

Carbon-based catalysts with free-standing structure are essential for rechargeable zinc-air battery as electrodes, which can avoid the side effects brought by organic binder. However, the current preparation methods still can be improved for faster preparation process and morphology control. In this study, we reported a fabrication strategy of self-standing carbon catalyst loaded with CoFe nanoparticles and carbon nanotube as air electrodes for liquid rechargeable zinc-air battery.

View Article and Find Full Text PDF

The survival analysis of stage III and IV inoperable lung large cell neuroendocrine carcinoma and the role of LIPI in immunological stratification.

Lung Cancer

August 2025

The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou, China; Guangzhou Institute of Respiratory Health, Guangzhou, C

Background: Large cell neuroendocrine carcinoma (LCNEC) represents a rare and unique type of lung tumor with an unfavorable prognosis. It is essential to summarize the treatment modalities and prognosis for inoperable stage III and IV LCNEC, explore the role of frontline immunotherapy, and examine the stratification role of the Lung Immune Prognostic Index (LIPI) and its relationship with the tumor microenvironment (TME).

Methods: This study retrospectively analyzed 160 patients with inoperable lung LCNEC (L-LCNEC) admitted to three hospitals from December 2012 to November 2023.

View Article and Find Full Text PDF

Background: Inflammation impacts the prognosis of numerous types of tumors. Inflammatory indicators such as the neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and neutrophil-to-eosinophil ratio (NER) have emerged as potential prognostic markers and are closely correlated with the outcomes of cancer patients. However, the connection between NER and cancer prognosis remains incompletely understood.

View Article and Find Full Text PDF

Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.

View Article and Find Full Text PDF