98%
921
2 minutes
20
The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown. Inner-ear gene expression data will help illuminate each of these areas. For over a decade, our laboratories and others have generated extensive sets of gene expression data for different cell types in the inner ear using various sample preparation methods and high-throughput genome-wide approaches. To facilitate the study of genes in the inner ear by efficient presentation of the accumulated data and to foster collaboration among investigators, we have developed the Shared Harvard Inner Ear Laboratory Database (SHIELD), an integrated resource that seeks to compile, organize and analyse the genomic, transcriptomic and proteomic knowledge of the inner ear. Five datasets are currently available. These datasets are combined in a relational database that integrates experimental data and annotations relevant to the inner ear. The SHIELD has a searchable web interface with two data retrieval options: viewing the gene pages online or downloading individual datasets as data tables. Each retrieved gene page shows the gene expression data and detailed gene information with hyperlinks to other online databases with up-to-date annotations. Downloadable data tables, for more convenient offline data analysis, are derived from publications and are current as of the time of publication. The SHIELD has made published and some unpublished data freely available to the public with the hope and expectation of accelerating discovery in the molecular biology of balance, hearing and deafness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513695 | PMC |
http://dx.doi.org/10.1093/database/bav071 | DOI Listing |
PLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFHum Genet
September 2025
College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.
Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
September 2025
Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
Objective: To conduct a systematic review and meta-analysis to assess the association between type 2 diabetes and hearing loss.
Data Sources: Search conducted in PubMed and Scopus databases for articles published between January 2019 and April 2024.
Review Methods: Quality assessment and risk of bias analysis were conducted using the Newcastle-Ottawa scale, and meta-analyses of pooled data were performed with Cochrane's Review Manager.
J Assoc Res Otolaryngol
September 2025
Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON, M4N 3M5, Canada.
Purpose: Delivery of therapeutics to the inner ear is complicated by their inaccessible location and the presence of the blood-labyrinth barrier that restricts most blood-borne compounds from entering the inner ear. This study addresses the challenge of optimal delivery in treating inner ear disease, focusing on magnetic targeting gene therapy using adeno-associated virus (AAV).
Methods: The investigation explores three AAV serotypes (AAV2 Quad Mut, AAV2 pANC80L65, and AAV9 PHP.
J Vis Exp
August 2025
Marianne Bernadotte Centrum, Department for Clinical Neuroscience, Karolinska Institutet; St Erik Eye Hospital.
The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.
View Article and Find Full Text PDF