Gene structure variation in segmental duplication block C of human chromosome 7q 11.23 during primate evolution.

Gene

Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea. Electronic address:

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Segmental duplication, or low-copy repeat (LCR) event, occurs during primate evolution and is an important source of genomic diversity, including gain or loss of gene function. The human chromosome 7q 11.23 is related to the William-Beuren syndrome and contains large region-specific LCRs composed of blocks A, B, and C that have different copy numbers in humans and different primates. We analyzed the structure of POM121, NSUN5, FKBP6, and TRIM50 genes in the LCRs of block C. Based on computational analysis, POM121B created by a segmental duplication acquired a new exonic region, whereas NSUN5B (NSUN5C) showed structural variation by integration of HERV-K LTR after duplication from the original NSUN5 gene. The TRIM50 gene originally consists of seven exons, whereas the duplicated TRIM73 and TRIM74 genes present five exons because of homologous recombination-mediated deletion. In addition, independent duplication events of the FKBP6 gene generated two pseudogenes at different genomic locations. In summary, these clustered genes are created by segmental duplication, indicating that they show dynamic evolutionary events, leading to structure variation in the primate genome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2015.07.060DOI Listing

Publication Analysis

Top Keywords

segmental duplication
16
structure variation
8
human chromosome
8
chromosome 1123
8
primate evolution
8
created segmental
8
duplication
6
gene
5
gene structure
4
segmental
4

Similar Publications

Branched-chain amino acid aminotransferases (BCATs) catalyze both the final anabolic step and the initial catabolic step of branched-chain amino acids (BCAAs), which are pivotal for the formation of plant branched-chain volatiles (BCVs). However, the members of BCAT family in apple (Malus domestica Borkh.) remain poorly characterized.

View Article and Find Full Text PDF

Genome-Wide Identification, Characterization, and Expression Analysis of Genes During Anthocyanin Biosynthesis in Mango ( L.).

Biology (Basel)

July 2025

Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

B-box (BBX) transcription factors are critical regulators of light-mediated anthocyanin biosynthesis, influencing peel coloration in plants. To explore their role in red mango cultivars, we identified 32 genes (-) in the mango ( L.) genome using a genome-wide analysis.

View Article and Find Full Text PDF

Genome-Wide Identification of Heat Shock Protein Gene Family and Their Response to Chronic Heat Stress in Skeletal Muscle of Black Rockfish (Sebastes schlegelii).

Fish Shellfish Immunol

September 2025

MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China. Electronic addre

Functioning as molecular chaperones, heat shock proteins (HSPs) are rapidly upregulated under stress conditions, safeguarding cells against damage induced by heat, mechanical injury, and chemical agents. Despite their critical physiological roles, a comprehensive genome-wide characterization of HSP genes has been lacking for Sebastes schlegelii, a commercially important coastal benthic fish. In this study, we systematically identified the HSP gene family and analyzed its expression profiles.

View Article and Find Full Text PDF

Background: Proteins containing domains of unknown function (DUFs) play a crucial role in plant growth, development and stress adaptation, but many of them are still uncharacterized. The DUF789 family is one of the least studied of these, especially in economically significant crops like cotton (Gossypium spp.), whose possible function in fibre production and abiotic stress response is yet unknown.

View Article and Find Full Text PDF

Background: The Brassinazole-resistant (BZR) family of transcription factors acts as key regulators in brassinosteroid (BR) signaling, influencing plant growth, development, biotic and abiotic stresses. However, systematic analysis of the genes in oat has not been conducted. Moreover, little is known about their functions in osmotic stress, which is a major abiotic stress affecting oat production.

View Article and Find Full Text PDF