Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414354PMC
http://dx.doi.org/10.1016/j.jmb.2015.03.010DOI Listing

Publication Analysis

Top Keywords

pentameric
4
pentameric nucleoplasmin
4
nucleoplasmin fold
4
fold drosophila
4
drosophila fkbp39
4
fkbp39 large
4
large number
4
number chromatin-related
4
chromatin-related proteins
4
proteins nucleoplasmin
4

Similar Publications

Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.

View Article and Find Full Text PDF

Pillar-like Macrocycle Reversibly Self-Assembled from a Molecular Thermally Activated Delayed Fluorescence Emitter Based on B ← N Dative Bonds with Intriguing Fluorescence.

J Am Chem Soc

September 2025

State Key Laboratory of Advanced Materials for Intelligent Sensing and Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China.

Incorporating boron atoms into organic macrocycles imparts unique chemical, electronic, and optical properties. The concept of making use of dative boron-nitrogen (B ← N) bonds for the construction of macrocycles has been proposed, but very few examples have been prepared with functional structures, much less pillar-like and other prismatic macrocycles, and their various functionalities have not been fully exploited. Here, we introduce a "functional molecular wall" synthetic protocol based on the self-assembly characteristics of B ← N dative bonds to construct highly symmetrical macrocycles, forming a quasi-pentagonal-shaped macrocycle (named [5]pyBN-) with a pillar-like structure.

View Article and Find Full Text PDF

The α7-nicotinic acetylcholine receptor (α7-nAChR) is a cation-selective member of the superfamily of Cys-loop receptors. Ubiquitously expressed throughout the body of vertebrate animals, this pentameric ligand-gated ion channel participates in a wide range of physiological phenomena - as diverse as synaptic transmission and the control of excessive inflammation - and is an attractive therapeutic target for novel ligands. Although notable efforts have been made to understand this receptor-channel in terms of function and structure, many questions remain unanswered despite the molecular simplicity of its homomeric assembly.

View Article and Find Full Text PDF

Unlabelled: Opsins are highly abundant retinal proteins in the membranes of photoheterotrophic bacteria. However, some microbial genomes encode an but lack the gene for the final enzyme in retinal synthesis. To account for this paradox, we hypothesized that bacterial opsins play a role in membrane structure and/or biogenesis independent from their potential for light-driven signaling or proton pumping.

View Article and Find Full Text PDF

Capsid structure of phage SPO1 reveals novel minor capsid proteins and insights into capsid stabilization.

Structure

August 2025

School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China. Electronic address:

SPO1-related bacteriophages are promising candidates for phage therapy. We present the 3.0 Å cryo-electron microscopy (cryo-EM) structure of the SPO1 capsid with a triangulation number T = 16, enabling the construction of an atomic model comprising the major capsid protein and three types of minor capsid proteins: gp29.

View Article and Find Full Text PDF