The double-helix point-spread function (DH-PSF) is one of the most used PSFs for large depth-of-field 3D single-molecule localisation microscopy. Due to its popularity, many algorithms have been developed to analyse experimental DH-PSF data, either based on dedicated DH-PSF fitting or on generalised PSF fitting, typically using cubic splines. We show here that the most popular implementations of both these approaches have limitations in terms of localisation performance, processing speed or user-friendliness.
View Article and Find Full Text PDFThe eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other.
View Article and Find Full Text PDFEpigenetics Chromatin
April 2019
Background: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance.
Results: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation.
A major challenge in single-molecule imaging is tracking the dynamics of proteins or complexes for long periods of time in the dense environments found in living cells. Here, we introduce the concept of using FRET to enhance the photophysical properties of photo-modulatable (PM) fluorophores commonly used in such studies. By developing novel single-molecule FRET pairs, consisting of a PM donor fluorophore (either mEos3.
View Article and Find Full Text PDFSingle-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy.
View Article and Find Full Text PDFGeneral transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box.
View Article and Find Full Text PDFSingle-molecule localization microscopy, typically based on total internal reflection illumination, has taken our understanding of protein organization and dynamics in cells beyond the diffraction limit. However, biological systems exist in a complicated three-dimensional environment, which has required the development of new techniques, including the double-helix point spread function (DHPSF), to accurately visualize biological processes. The application of the DHPSF approach has so far been limited to the study of relatively small prokaryotic cells.
View Article and Find Full Text PDFSens Actuators B Chem
September 2016
A multi-layer device, combining hydrodynamic trapping with microfluidic valving techniques, has been developed for on-chip manipulation and imaging of single cells and particles. Such a device contains a flow layer with trapping channels to capture single particles or cells and a control layer with valve channels to selectively control the trap and release processes. Particles and cells have been successfully trapped and released using the proposed device.
View Article and Find Full Text PDFBiomed Microdevices
August 2016
A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis.
View Article and Find Full Text PDFSingle-molecule localisation microscopy (SMLM) allows the super-resolved imaging of proteins within mammalian nuclei at spatial resolutions comparable to that of a nucleosome itself (~20 nm). The technique is therefore well suited to the study of chromatin structure. Fixed-cell SMLM has already allowed temporal 'snapshots' of how proteins are arranged on chromatin within mammalian nuclei.
View Article and Find Full Text PDFNucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2015
CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process.
View Article and Find Full Text PDFThe nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging.
View Article and Find Full Text PDFLarge-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales.
View Article and Find Full Text PDFRecent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. In order to complement the existing protocols, and to extend the range of possible applications, we introduce a novel approach for observing in-cell NMR spectra using the sf9 cell/baculovirus system. High-resolution 2D (1)H-(15)N correlation spectra were observed for four model proteins expressed in sf9 cells.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2013
The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1).
View Article and Find Full Text PDFThe inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states.
View Article and Find Full Text PDFThe NuRD (nucleosome remodeling and deacetylase) complex serves as a crucial epigenetic regulator of cell differentiation, proliferation, and hematopoietic development by coupling the deacetylation and demethylation of histones, nucleosome mobilization, and the recruitment of transcription factors. The core nucleosome remodeling function of the mammalian NuRD complex is executed by the helicase-domain-containing ATPase CHD4 (Mi-2β) subunit, which also contains N-terminal plant homeodomain (PHD) and chromo domains. The mode of regulation of chromatin remodeling by CHD4 is not well understood, nor is the role of its PHD and chromo domains.
View Article and Find Full Text PDFPost-translational modification of histone proteins are known to play an important role in regulating chromatin structure. In an effort to find additional histone modifications we set out to screen enzymes of the 2-oxoglutarate and Fe(II)-dependent (2-OG-Fe(II)) dioxygenase family for activity towards histones. Here we show that the Schizosaccharomyces pombe 2-OG-Fe(II) dioxygenase domain containing protein-2 (Ofd2) is a histone H2A dioxygenase enzyme.
View Article and Find Full Text PDFJ Biomol NMR
December 2011
Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data.
View Article and Find Full Text PDF