A microfluidic platform for trapping, releasing and super-resolution imaging of single cells.

Sens Actuators B Chem

Nanoscience Centre, Department of Engineering, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, United Kingdom.

Published: September 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A multi-layer device, combining hydrodynamic trapping with microfluidic valving techniques, has been developed for on-chip manipulation and imaging of single cells and particles. Such a device contains a flow layer with trapping channels to capture single particles or cells and a control layer with valve channels to selectively control the trap and release processes. Particles and cells have been successfully trapped and released using the proposed device. The device enables the trapping of single particles with a trapping efficiency of greater than 95%, and allows for single particles and cells to be trapped, released and manipulated by simply controlling corresponding valves. Moreover, the trap and release processes are found to be compatible with biological samples like cells. Our device allows stable immobilisation of large numbers of single cells in a few minutes, significantly easing the experiment setup for single-cell characterisation and offering a stable platform for both single-molecule and super-resolution imaging. Proof-of-concept super- resolution imaging experiments with mouse embryonic stem cells (mESCs) have been conducted by exploiting super-resolution photoactivated localisation microscopy (PALM). Cells and nuclei were stably trapped and imaged. Centromeres of ∼200 nm size could be identified with a localisation precision of <15 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872524PMC
http://dx.doi.org/10.1016/j.snb.2016.03.131DOI Listing

Publication Analysis

Top Keywords

single cells
12
single particles
12
particles cells
12
cells
9
super-resolution imaging
8
imaging single
8
trap release
8
release processes
8
cells trapped
8
trapped released
8

Similar Publications

IGLV3-21-directed bispecific antibodies activate T cells and promote killing in a high-risk subset of chronic lymphocytic leukemia.

Haematologica

September 2025

Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.

View Article and Find Full Text PDF

Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.

View Article and Find Full Text PDF

Drift velocity of bacterial chemotaxis in dynamic chemical environments.

Philos Trans A Math Phys Eng Sci

September 2025

School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK.

Chemotaxis allows swimming bacteria to navigate through chemical landscapes. To date, continuum models of chemotactic populations (e.g.

View Article and Find Full Text PDF

Repopulating Microglia Suppress Peripheral Immune Cell Infiltration to Promote Poststroke Recovery.

CNS Neurosci Ther

September 2025

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.

Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.

View Article and Find Full Text PDF