98%
921
2 minutes
20
In Arabidopsis leaf primordia, the expression of HD-Zip III, which promotes tissue differentiation on the adaxial side of the leaf primordia, is repressed by miRNA165/166 (miR165/166). Small RNAs, including miRNAs, can move from cell to cell. In this study, HD-Zip III expression was strikingly repressed by miR165/166 in the epidermis and parenchyma cells on the abaxial side of the leaf primordia compared with those on the adaxial side. We also found that the MIR165A locus, which was expressed in the abaxial epidermis, was sufficient to establish the rigid repression pattern of HD-Zip III expression in the leaf primordia. Ectopic expression analyses of MIR165A showed that the abaxial-biased miR165 activity in the leaf primordia was formed neither by a polarized distribution of factors affecting miR165 activity nor by a physical boundary inhibiting the cell-to-cell movement of miRNA between the adaxial and abaxial sides. We revealed that cis-acting factors, including the promoter, backbone, and mature miRNA sequence of MIR165A, are necessary for the abaxial-biased activity of miR165 in the leaf primordia. We also found that the abaxial-determining genes YABBYs are trans-acting factors that are necessary for the miR165 activity pattern, resulting in the rigid determination of the adaxial-abaxial boundary in leaf primordia. Thus, we proposed a molecular mechanism in which the abaxial-biased patterning of miR165 activity is confined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12834 | DOI Listing |
Plants (Basel)
August 2025
State Key Laboratory of Topical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.
() is a critical transcription factor that plays a significant role in regulating plant growth and development. Mining the coconut SPL family offers valuable insights into the regulation of important agronomic traits, including the length of the juvenile phase. In this study, 25 were identified and were classified into eight subfamilies.
View Article and Find Full Text PDFPlant Methods
August 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
BACKGROUND ACACIA MELANOXYLON: is an important species for establishing pulpwood plantations due to its high application value in engineered wood products. However, the lack of a well-established in vitro regeneration system has severely constrained its industrial-scale propagation and the induction of tetraploids. RESULTS: In this study, using the superior A.
View Article and Find Full Text PDFPlant Cell
August 2025
Plant-Environment Signaling, Dept. of Biology, Utrecht University, Padualaan 8 3584CH, Utrecht, The Netherlands.
Plants compete for light by growing taller than their nearest competitors. This is part of the shade avoidance syndrome and is a response to an increase in far-red light (FR) reflected from neighboring leaves. The root responds to this shoot-sensed FR cue by reducing lateral root emergence.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
Background: Chinese chestnut (Castanea mollissima) is an economically and ecologically important woody nut crop. In C. mollissima, flowering is fundamental for nut yield.
View Article and Find Full Text PDFPlant Cell Rep
August 2025
Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy.
The grapevine VviEPFL9-2 paralog is specifically expressed during leaf expansion and its knockout provide a phenotype with superior adaptation to environmental stresses via reduced stomatal density. In Arabidopsis stomatal initiation relies on the transcription factor SPEECHLESS, which is positively regulated by AtEPFL9, a peptide of the epidermal patterning factor family. In grapevine, two EPFL9 paralogs exist but despite a structural similarity, their specific function remains unclear.
View Article and Find Full Text PDF