Artifact suppression and analysis of brain activities with electroencephalography signals.

Neural Regen Res

Department of Information and Communication Engineering, The University of Tokyo, Tokyo, Japan ; Department of Computer Science and Engineering, Rajshahi University, Rajshahi, Bangladesh.

Published: June 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107812PMC
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.16.007DOI Listing

Publication Analysis

Top Keywords

brain activities
16
artifact suppression
12
rhythmic components
12
brain
9
electroencephalography signals
8
regional brain
8
activities
6
artifact
5
electroencephalography
5
suppression analysis
4

Similar Publications

Timing Matters: How Daily Rhythms Affect Remote Ischemic Postconditioning Therapy for Stroke.

Stroke

September 2025

Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).

Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.

Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Aim: A total of 30% of individuals with epilepsy are resistant to drug treatment. Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) shows promise for treating drug-resistant epilepsy (DRE), but further research is needed to optimize DBS parameters, including stimulation frequency. This study aimed to reveal the optimal frequency for ANT-DBS by testing the real-time effects of various stimulation frequencies on the ANT among patients undergoing stereoelectroencephalography (SEEG) electrode implantation.

View Article and Find Full Text PDF

Background: Neurological diseases such as stroke or Parkinson's disease are often accompanied by weakening or loss of proprioception, which seriously affects the motor control ability of the patients. However, proprioception rehabilitation is challenging due to the pain caused by impaired joints and the hard efforts that patients have to make during training. This study investigated the cross-transfer effect of short-term visuomotor training to the untrained wrist from the trained wrist, from both views of behavioral results and brain activity analyses.

View Article and Find Full Text PDF

Restoring Synaptic Balance in Schizophrenia: Insights From a Thalamo-Cortical Conductance-Based Model.

Schizophr Bull

September 2025

Department of Psychology, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX4 4QG, United Kingdom.

Background And Hypothesis: The dysconnectivity hypothesis of schizophrenia suggests that atypical neural communication underlies the disorder's diverse symptoms. Building on this framework, we propose that specific synaptic disturbances within thalamo-cortical circuits contribute to an imbalance in excitation and inhibition, leading to alteration in oscillations. Our study investigates these alterations and explores whether synaptic restoration can remediate neural activity of schizophrenia and align it with healthy patterns.

View Article and Find Full Text PDF