Publications by authors named "Md Rashed-Al-Mahfuz"

Good vaccine safety and reliability are essential for successfully countering infectious disease spread. A small but significant number of adverse reactions to COVID-19 vaccines have been reported. Here, we aim to identify possible common factors in such adverse reactions to enable strategies that reduce the incidence of such reactions by using patient data to classify and characterise those at risk.

View Article and Find Full Text PDF

Medical practitioners need to understand the critical features of ECG beats to diagnose and identify cardiovascular conditions accurately. This would be greatly facilitated by identifying the significant features of frequency components in temporal ECG wave-forms using computational methods. In this study, we have proposed a novel ECG beat classifier based on a customized VGG16-based Convolution Neural Network (CNN) that uses the time-frequency representation of temporal ECG, and a method to identify the contribution of interpretable ECG frequencies when classifying based on the SHapley Additive exPlanations (SHAP) values.

View Article and Find Full Text PDF

Objective: Chronic kidney disease (CKD) is a major public health concern worldwide. High costs of late-stage diagnosis and insufficient testing facilities can contribute to high morbidity and mortality rates in CKD patients, particularly in less developed countries. Thus, early diagnosis aided by vital parameter analytics using affordable computer-aided diagnosis could not only reduce diagnosis costs but improve patient management and outcomes.

View Article and Find Full Text PDF

Background: Accurate prediction of the disease severity of patients with COVID-19 would greatly improve care delivery and resource allocation and thereby reduce mortality risks, especially in less developed countries. Many patient-related factors, such as pre-existing comorbidities, affect disease severity and can be used to aid this prediction.

Objective: Because rapid automated profiling of peripheral blood samples is widely available, we aimed to investigate how data from the peripheral blood of patients with COVID-19 can be used to predict clinical outcomes.

View Article and Find Full Text PDF

The control and manipulation of various types of end effectors such as powered exoskeletons, prostheses, and 'neural' cursors by brain-machine interface (BMI) systems has been the target of many research projects. A seamless "plug and play" interface between any BMI and end effector is desired, wherein similar user's intent cause similar end effectors to behave identically. This report is based on the outcomes of an IEEE Standards Association Industry Connections working group on End Effectors for Brain-Machine Interfacing that convened to identify and address gaps in the existing standards for BMI-based solutions with a focus on the end-effector component.

View Article and Find Full Text PDF

Background: Diagnosing epileptic seizures using electroencephalogram (EEG) in combination with deep learning computational methods has received much attention in recent years. However, to date, deep learning techniques in seizure detection have not been effectively harnessed due to sub-optimal classifier design and improper representation of the time-domain signal.

Methods: In this study, we focused on designing and evaluating deep convolutional neural network-based classifiers for seizure detection.

View Article and Find Full Text PDF

The recent outbreak of the respiratory ailment COVID-19 caused by novel coronavirus SARS-Cov2 is a severe and urgent global concern. In the absence of effective treatments, the main containment strategy is to reduce the contagion by the isolation of infected individuals; however, isolation of unaffected individuals is highly undesirable. To help make rapid decisions on treatment and isolation needs, it would be useful to determine which features presented by suspected infection cases are the best predictors of a positive diagnosis.

View Article and Find Full Text PDF

Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle).

View Article and Find Full Text PDF