Introduction: Alzheimer's disease (AD) is one of the most common neurodegenerative disabilities that often leads to memory loss, confusion, difficulty in language and trouble with motor coordination. Although several machine learning (ML) and deep learning (DL) algorithms have been utilized to identify Alzheimer's disease (AD) from MRI scans, precise classification of AD categories remains challenging as neighbouring categories share common features.
Methods: This study proposes transfer learning-based methods for extracting features from MRI scans for multi-class classification of different AD categories.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, characterized by progressive motor and cognitive decline, leading to long-term disability and significantly impacting quality of life. While PD research has traditionally focused on dopaminergic neurons in the substantia nigra (SN), emerging evidence also suggests glial involvement in disease progression. So, this study explored PD-associated key genes from neuronal and glial cell types to uncover pathogenetic mechanisms and potential therapeutics by employing single-nucleus RNA sequencing (snRNA-seq) data from the accession number GSE184950.
View Article and Find Full Text PDFObjectives: Understanding drivers' cognitive load is essential for enhancing road safety, as cognitive demands fluctuate across different driving scenarios, potentially impacting performance, and safety, particularly for drivers with neurological disabilities. This study aims to predict driving states in healthy adult drivers using electroencephalogram (EEG) and machine learning (ML) models; and interpret the neural activity associated with each driving condition.
Methods: EEG data were collected from participants using a Cognionics Quick-20 EEG headset in Resting state, City-way, Highway, and Suburb-way driving states in 360 full-screen real car cabin inside the driving simulator.
Plant diseases adversely affect the agricultural sector by substantially affecting food security and limiting production. We introduce PlantCareNet, a novel, automated, end-to-end diagnostic system for plant diseases that can also offer interactive guidance to users. The system utilizes a dual mode strategy that integrates advanced deep learning algorithms for precise disease diagnosis with a knowledge-based framework guided by experts for preventive measures.
View Article and Find Full Text PDFAs the world population is increasing day by day, so is the need for more advanced automated precision agriculture to meet the increasing demands for food while decreasing labor work and saving water for crops. Recently, there have been many studies done in this field, but very few discuss implementing smart technologies to present a combined sustainable farming system. In this article, we present a complete integrated design of a smart IoT-based suitable agricultural land and crop selection, along with an irrigation system using agricultural mapping, machine learning, and fuzzy logic for precision agriculture.
View Article and Find Full Text PDFArtificial intelligence (AI)-based automated human activity recognition (HAR) is essential in enhancing assistive technologies for disabled individuals, focusing on fall detection, tracking rehabilitation progress, and analyzing personalized movement patterns. It also significantly manages and grows multiple industries, such as surveillance, sports, and diagnosis. This paper proposes a novel strategy using a three-stage feature ensemble combining deep learning (DL) and machine learning (ML) for accurate and automatic classification of activity recognition.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally, significantly affecting liver functions, thus necessitating the identification of biomarkers and effective therapeutics to improve HCC-based disabilities. This study aimed to identify prognostic biomarkers, signaling cascades, and candidate drugs for the treatment of HCC through integrated bioinformatics approaches such as functional enrichment analysis, survival analysis, molecular docking, and simulation. Differential expression and functional enrichment analyses revealed 176 common differentially expressed genes from two microarray datasets, GSE29721 and GSE49515, significantly involved in HCC development and progression.
View Article and Find Full Text PDFThe detection of lung nodules at their early stages may significantly enhance the survival rate and prevent progression to severe disability caused by advanced lung cancer, but it often requires manual and laborious efforts for radiologists, with limited success. To alleviate it, we propose a Multi-View Soft Attention-Based Convolutional Neural Network (MVSA-CNN) model for multi-class lung nodular classifications in three stages (benign, primary, and metastatic). Initially, patches from each nodule are extracted into three different views, each fed to our model to classify the malignancy.
View Article and Find Full Text PDFHypopharyngeal cancer is a disease that is associated with EGFR-mutated lung adenocarcinoma. Here we utilized a bioinformatics approach to identify genetic commonalities between these two diseases. To this end, we examined microarray datasets from GEO (Gene Expression Omnibus) to identify differentially expressed genes, common genes, and hub genes between the selected two diseases.
View Article and Find Full Text PDFThe complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development.
View Article and Find Full Text PDFHeart failure (HF) is a leading cause of mortality worldwide. Machine learning (ML) approaches have shown potential as an early detection tool for improving patient outcomes. Enhancing the effectiveness and clinical applicability of the ML model necessitates training an efficient classifier with a diverse set of high-quality datasets.
View Article and Find Full Text PDFRespiratory diseases (RD) are significant public health burdens and malignant diseases worldwide. However, the RD-related biological information and interconnection still need to be better understood. Thus, this study aims to detect common differential genes and potential hub genes (HubGs), emphasizing their actions, signaling pathways, regulatory biomarkers for diagnosing RD and candidate drugs for treating RD.
View Article and Find Full Text PDFBiomarker-based cancer identification and classification tools are widely used in bioinformatics and machine learning fields. However, the high dimensionality of microarray gene expression data poses a challenge for identifying important genes in cancer diagnosis. Many feature selection algorithms optimize cancer diagnosis by selecting optimal features.
View Article and Find Full Text PDFFront Plant Sci
August 2023
Phenotyping is used in plant breeding to identify genotypes with desirable characteristics, such as drought tolerance, disease resistance, and high-yield potentials. It may also be used to evaluate the effect of environmental circumstances, such as drought, heat, and salt, on plant growth and development. Wheat spike density measure is one of the most important agronomic factors relating to wheat phenotyping.
View Article and Find Full Text PDFSensors (Basel)
August 2023
The COVID-19 pandemic wreaks havoc on healthcare systems all across the world. In pandemic scenarios like COVID-19, the applicability of diagnostic modalities is crucial in medical diagnosis, where non-invasive ultrasound imaging has the potential to be a useful biomarker. This research develops a computer-assisted intelligent methodology for ultrasound lung image classification by utilizing a fuzzy pooling-based convolutional neural network FP-CNN with underlying evidence of particular decisions.
View Article and Find Full Text PDFThree-dimensional video services delivered through wireless communication channels have to deal with numerous challenges due to the limitations of both the transmission channel's bandwidth and receiving devices. Adverse channel conditions, delays, or jitters can result in bit errors and packet losses, which can alter the appearance of stereoscopic 3D (S3D) video. Due to the perception of dissimilar patterns by the two human eyes, they can not be fused into a stable composite pattern in the brain and hence try to dominate by suppressing each other.
View Article and Find Full Text PDFGood vaccine safety and reliability are essential for successfully countering infectious disease spread. A small but significant number of adverse reactions to COVID-19 vaccines have been reported. Here, we aim to identify possible common factors in such adverse reactions to enable strategies that reduce the incidence of such reactions by using patient data to classify and characterise those at risk.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
October 2022
Inherently ultrasound images are susceptible to noise which leads to several image quality issues. Hence, rating of an image's quality is crucial since diagnosing diseases requires accurate and high-quality ultrasound images. This research presents an intelligent architecture to rate the quality of ultrasound images.
View Article and Find Full Text PDFInfection triggers a dynamic cascade of reciprocal events between host and pathogen wherein the host activates complex mechanisms to recognise and kill pathogens while the pathogen often adjusts its virulence and fitness to avoid eradication by the host. The interaction between the pathogen and the host results in large-scale changes in gene expression in both organisms. Dual RNA-seq, the simultaneous detection of host and pathogen transcripts, has become a leading approach to unravelling complex molecular interactions between the host and the pathogen and is particularly informative for intracellular organisms.
View Article and Find Full Text PDFOne of the common types of cancer for women is ovarian cancer. Still, at present, there are no drug therapies that can properly cure this deadly disease. However, early-stage detection could boost the life expectancy of the patients.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
July 2022
Human Activity Recognition (HAR) systems are devised for continuously observing human behavior - primarily in the fields of environmental compatibility, sports injury detection, senior care, rehabilitation, entertainment, and the surveillance in intelligent home settings. Inertial sensors, e.g.
View Article and Find Full Text PDFThe brain tumor is one of the deadliest cancerous diseases and its severity has turned it to the leading cause of cancer related mortality. The treatment procedure of the brain tumor depends on the type, location and size of the tumor. Relying solely on human inspection for precise categorization can lead to inevitably dangerous situation.
View Article and Find Full Text PDFSystemic Sclerosis (SSc) is an autoimmune disease associated with changes in the skin's structure in which the immune system attacks the body. A recent meta-analysis has reported a high incidence of cancer prognosis including lung cancer (LC), leukemia (LK), and lymphoma (LP) in patients with SSc as comorbidity but its underlying mechanistic details are yet to be revealed. To address this research gap, bioinformatics methodologies were developed to explore the comorbidity interactions between a pair of diseases.
View Article and Find Full Text PDFLung cancer, also known as pulmonary cancer, is one of the deadliest cancers, but yet curable if detected at the early stage. At present, the ambiguous features of the lung cancer nodule make the computer-aided automatic diagnosis a challenging task. To alleviate this, we present LungNet, a novel hybrid deep-convolutional neural network-based model, trained with CT scan and wearable sensor-based medical IoT (MIoT) data.
View Article and Find Full Text PDF