98%
921
2 minutes
20
The COVID-19 pandemic wreaks havoc on healthcare systems all across the world. In pandemic scenarios like COVID-19, the applicability of diagnostic modalities is crucial in medical diagnosis, where non-invasive ultrasound imaging has the potential to be a useful biomarker. This research develops a computer-assisted intelligent methodology for ultrasound lung image classification by utilizing a fuzzy pooling-based convolutional neural network FP-CNN with underlying evidence of particular decisions. The fuzzy-pooling method finds better representative features for ultrasound image classification. The FPCNN model categorizes ultrasound images into one of three classes: covid, disease-free (normal), and pneumonia. Explanations of diagnostic decisions are crucial to ensure the fairness of an intelligent system. This research has used Shapley Additive Explanation (SHAP) to explain the prediction of the FP-CNN models. The prediction of the black-box model is illustrated using the SHAP explanation of the intermediate layers of the black-box model. To determine the most effective model, we have tested different state-of-the-art convolutional neural network architectures with various training strategies, including fine-tuned models, single-layer fuzzy pooling models, and fuzzy pooling at all pooling layers. Among different architectures, the Xception model with all pooling layers having fuzzy pooling achieves the best classification results of 97.2% accuracy. We hope our proposed method will be helpful for the clinical diagnosis of covid-19 from lung ultrasound (LUS) images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107407 | DOI Listing |
J Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDFFront Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDFJ Appl Stat
February 2025
Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.
We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDF