Transcript suppression of TaGW2 increased grain width and weight in bread wheat.

Funct Integr Genomics

The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Published: June 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bread wheat (Triticum aestivum L.) is a major staple crop in the world. Grain weight is a major factor of grain yield in wheat, and the identification of candidate genes associated with grain weight is very important for high-yield breeding of wheat. TaGW2 is an orthologous gene of rice OsGW2 that negatively regulates the grain width and weight in rice. There are three TaGW2 homoeologs in bread wheat, TaGW2A, TaGW2B, and TaGW2D. In this study, a specific TaGW2-RNA interference (RNAi) cassette was constructed and transformed into a Chinese bread wheat variety 'Shi 4185' with small grain. The transcript levels of TaGW2A, TaGW2B, and TaGW2D were simultaneously downregulated in TaGW2-RNAi transgenic wheat lines. Compared with the controls, TaGW2-underexpressing transgenic lines displayed significantly increases in the grain width and weight, suggesting that TaGW2 negatively regulated the grain width and weight in bread wheat. Further transcript analysis showed that in different bread wheat accessions, the transcript abundance of TaGW2A was negatively associated with the grain width.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-014-0380-5DOI Listing

Publication Analysis

Top Keywords

bread wheat
24
grain width
20
width weight
16
grain
9
wheat
9
weight bread
8
grain weight
8
associated grain
8
tagw2a tagw2b
8
tagw2b tagw2d
8

Similar Publications

White bread is a worldwide consumed food product with significant nutritional value. The loaf volume of bread is a crucial parameter that influences its texture, appearance and consumer acceptability. Near Infrared Spectroscopy (NIRS) has shown significant potential in predicting the loaf volume of white bread, providing a faster and potentially more accurate alternative to time consuming traditional methods.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Fine tuning wheat development for the winter to spring transition.

Plant Commun

September 2025

School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:

The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.

View Article and Find Full Text PDF

Modification of starch traits in commercial wheat through TaWaxy gene editing.

Carbohydr Polym

November 2025

State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Amylose content (AC) is a key determinant of wheat quality, and the TaWaxy gene determined amylose synthesis with a dose-dependent effect on AC. In this study, the TaWOX5 gene, which significantly enhances wheat transformation efficiency, was combined with CRISPR/SpCas9 system to generate TaWaxy mutants in a commercial winter wheat Jimai 22. Seven transgene-free mutant types were produced, compared to only three transgene-free mutants in the spring wheat variety Ningchun 4.

View Article and Find Full Text PDF