98%
921
2 minutes
20
Background: Optical sensing is a potential tool to estimate plant N status, but soil water deficits may interefere with forming a clear relationship. A greenhouse study was conducted with oat plants treated with three water regimes and four N levels to determine whether optical sensing could be used to estimate leaf N and relative water content (RWC).
Results: Leaf N was strongly correlated with reflectance at 550 nm and at around 705 nm, and N treatments caused a red-edge peak shift to lower wavelength. The ratio of the first derivative reflectance at 741-696 nm (FDRE) was identified to be a good estimator of leaf N at jointing (R(2) = 0.90) and heading (R(2) = 0.86) stages across water treatments. Leaf N also had a stronger association with the red-edge position (REP) at both stages (R(2) = 0.83 and 0.78), or with the ratio R4 (R760/R550) at jointing (R(2) = 0.88), than with chlorophyll meter (SPAD) readings. Under water stress, the predictive accuracy of leaf N increased with these reflectance indices, but decreased using SPAD readings.
Conclusion: The results indicate that specific reflectance indices of FDRE, REP and R4 may be used for a rapid and non-destructive estimation of oat plant N status over a range of water regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.6729 | DOI Listing |
Light Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.
Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Understanding how molecular aggregation influences nonlinear optical properties is essential for advancing organic fluorophores in imaging, sensing, and photonic applications. However, the relationship between the molecular aggregation and the magnitude of nonlinear two-photon absorption cross-section remains underexplored. Here, we systematically investigate the aggregation-dependent two-photon absorption properties of the fluorophore TPAPhCN by tuning the degree of aggregation.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.
The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.
View Article and Find Full Text PDF