Conditional protein splicing of α-sarcin in live cells.

Mol Biosyst

Centre for Biomedical Research, University of Victoria, P.O. Box 3020 Station CSC Victoria, BC, Canada V8W 3N5.

Published: April 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein splicing technology harnesses the ability of inteins to ligate protein fragments, forming a mature protein. This report describes our effort to engineer rapamycin-dependent protein splicing of a ribotoxin, called α-sarcin. Engineering this system required the investigation of important splicing parameters, including extein context and splicing temperature. We show α-sarcin splicing is dependent on rapamycin, is inducible with rapid kinetics, and triggers apoptosis in HeLa cells. These findings establish a proof-of-concept for a conditional cell ablation strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3mb70387hDOI Listing

Publication Analysis

Top Keywords

protein splicing
12
splicing
6
conditional protein
4
splicing α-sarcin
4
α-sarcin live
4
live cells
4
protein
4
cells protein
4
splicing technology
4
technology harnesses
4

Similar Publications

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a conserved RNA surveillance mechanism that degrades transcripts with premature termination codons (PTCs) and finetunes gene expression by targeting RNA transcripts with other NMD inducing features. This study demonstrates that conditional knockout of , a key NMD component, in oligodendrocyte lineage cells disrupts the degradation of PTC-containing transcripts, including aberrant variants of the RNA-binding protein The loss of SMG5 in both sexes of mice impaired oligodendrocyte differentiation, reduced myelin gene expression, and led to thinner myelin sheaths and compromised motor function in mice. Mechanistically, HNRNPL was shown to regulate the alternative splicing of myelin-associated genes and , and promote oligodendrocyte differentiation.

View Article and Find Full Text PDF

Progress of estrogen receptor and spliceosome in endometrial carcinoma.

Front Endocrinol (Lausanne)

September 2025

Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.

Endometrial cancer (EC) is one of the most common gynecological cancers in developed countries. Like EC, most female reproductive tract malignancies are thought to be hormonally driven, with estrogen signaling acting as an oncogenic signal. The actions of estrogen are mediated through the classical nuclear estrogen receptors α (ER-α) and β (ER-β) as well as transmembrane G protein-coupled estrogen receptors (GPR30 and GPER).

View Article and Find Full Text PDF

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF