98%
921
2 minutes
20
Calcitriol has been demonstrated to provide neuroprotection against ischemia/reperfusion (I/R) injury. However, the exact mechanism of this protection remains unknown. In the present study, the neuroprotective effect of calcitriol was investigated in rats exposed to cerebral I/R injury induced by middle cerebral artery occlusion (MCAO). In addition, the involvement of NR3A, extracellular signal‑regulated kinase 1/2 (ERK1/2), and phosphorylated cAMP/Ca2+‑response element binding protein (p‑CREB) in this protective action was determined in the hippocampal neurons. Western blot analysis was conducted to analyze the protein levels of NR3A, mitogen‑activated protein kinase kinase (MEK) and p‑CREB. The immunoreactivity of p‑CREB and NR3A were measured by quantum dot‑based immunofluorescence analysis. Results showed that MCAO rats exhibited large cortical infarct volumes. By contrast, intraperitoneal administration of calcitriol significantly reduced infarct volumes seven days following reperfusion, and these results were accompanied by elevated NR3A and p‑CREB activity in the hippocampal neurons. The inhibition of MEK by the addition of PD98059 led to attenuation of the neuroprotective effects of calcitriol and a correlated decrease in CREB activity. The results also demonstrated that calcitriol protected the brain from I/R injury through the NR3A‑MEK/ERK‑CREB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2013.1734 | DOI Listing |
Exp Ther Med
November 2025
School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.
Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.
View Article and Find Full Text PDFAm J Chin Med
September 2025
Department of Pharmacology.
Notoginsenoside R1 (NGR1), a natural triterpenoid saponin, is extracted from , and has cardiovascular and cerebrovascular protective effects due to anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Previous research has suggested a protective role for NGR1 in myocardial ischemia/reperfusion (MI/R) injury. However, the potential mechanisms involved have not been fully elucidated.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, China.
Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, China. Electronic address:
Ethnopharmacological Relevance: Acute kidney injury (AKI) is a growing worldwide health concern. Danggui Shaoyao San (DGSYS) was an frequently-used representative prescription to "promote blood and water and harmonize the body" in traditional Chinese medicine, and its underlying mechanism against AKI remains to be elucidated.
Aim Of The Study: To investigate the protective effect and potential molecular mechanism of DGSYS in alleviating AKI by network pharmacology and experiment validation.