Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In Romanesque wall paintings in Aragon (Spain), the pigment used for creating blue was a very characteristic mineral, aerinite, which came from local ores in the southern Pyrenees. Optical and scanning electron microscopy (SEM), with energy-dispersive X-ray (EDX) analysis, X-ray diffraction, and reflectance spectroscopy were used to make a detailed microcharacterization of this rare blue pigment in order to improve the knowledge of its composition and possible variability, from samples of medieval paintings and some mineral ores. New analytical data on the chemical composition of the blue pigment are reported here, together with the characterization of its microstructure, and the heterogeneity of the natural pigment made by the features of the ore itself. X-ray diffraction pattern and color parameters of the mineral ores are also included. The data obtained by SEM-EDX will assist identification of this pigment by electron microscopy. The natural variability in composition observed in the samples may be used to explain formation of the extracted mineral and to compare several ore sources. Connection of the ore composition with the pigments used in Romanesque wall paintings will help both provenance and attribution studies.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927613013391DOI Listing

Publication Analysis

Top Keywords

blue pigment
12
wall paintings
12
romanesque wall
8
electron microscopy
8
x-ray diffraction
8
mineral ores
8
pigment
6
microcharacterization natural
4
blue
4
natural blue
4

Similar Publications

Thermal stability of pigment- and structurally based body coloration in a polymorphic lizard.

J Therm Biol

September 2025

Ethology Lab, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, Spain.

Animal coloration plays a fundamental role in communication, camouflage, aposematism, mimicry and thermoregulation, and has strong implications for adaptation and diversification. Phenotypic plasticity of color traits can thus affect social, reproductive, antipredator, or thermoregulatory behavior and determining the causes and consequences of color change helps us understand evolution. In contrast to seasonal or ontogenetic color changes, physiological color change in response to fine-scale changes in environmental conditions has received less attention.

View Article and Find Full Text PDF

Physiological and Phytochemical Responses of L. to End-of-Day Red/Far-Red and Green Light.

Biology (Basel)

July 2025

TADRUS Research Group, Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avda. Madrid 44, 34004 Palencia, Spain.

L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown under a constant red/blue light background, compared with a red/blue control without EOD treatment.

View Article and Find Full Text PDF

Effects of red and blue light on photosynthetic carbon assimilation and growth-development in plants: A review.

Ying Yong Sheng Tai Xue Bao

July 2025

State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Agricultural University of Hebei, Baoding 071001, Hebei, China.

Red and blue light are the primary spectra absorbed by photosynthetic pigments in plants. Through the signal pathways mediated by phytochromes (PHY) and cryptochromes (CRY)/phototropins (PHOT), they coope-ratively regulate photosynthetic carbon assimilation, and plant growth and development. We reviewed the regulatory mechanisms of red and blue light on photosynthetic characteristics and plant growth and development.

View Article and Find Full Text PDF

Enhancement and mechanism of in-cluster two-component regulatory factors on granaticin production in Streptomyces vilmorinianum YP1.

J Biotechnol

August 2025

School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China. Electronic address:

Granaticins, a class of bioactive benzoisochromanequinones (BIQs), are natural blue pigments with biological activities, including antibacterial properties and promising clinical anticancer applications. However, their clinical and industrial applications are limited by low production yields and unclear biosynthetic regulation. In this study, we identified a rare in-cluster two-component system (TCS; orf10/orf11) within the granaticin biosynthesis-related gene cluster (BGC) of Streptomyces vilmorinianum YP1, a novel high-yielding producer.

View Article and Find Full Text PDF