Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis.

Methodology/principal Findings: We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC-based or 583 LTC-based contigs.

Conclusions/significance: The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628912PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059542PLOS

Publication Analysis

Top Keywords

bread wheat
12
physical map
12
map
9
long arm
8
wheat chromosome
8
wheat genome
8
wheat
6
chromosome
5
physical
4
physical mapping
4

Similar Publications

White bread is a worldwide consumed food product with significant nutritional value. The loaf volume of bread is a crucial parameter that influences its texture, appearance and consumer acceptability. Near Infrared Spectroscopy (NIRS) has shown significant potential in predicting the loaf volume of white bread, providing a faster and potentially more accurate alternative to time consuming traditional methods.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Fine tuning wheat development for the winter to spring transition.

Plant Commun

September 2025

School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:

The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.

View Article and Find Full Text PDF

Modification of starch traits in commercial wheat through TaWaxy gene editing.

Carbohydr Polym

November 2025

State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Amylose content (AC) is a key determinant of wheat quality, and the TaWaxy gene determined amylose synthesis with a dose-dependent effect on AC. In this study, the TaWOX5 gene, which significantly enhances wheat transformation efficiency, was combined with CRISPR/SpCas9 system to generate TaWaxy mutants in a commercial winter wheat Jimai 22. Seven transgene-free mutant types were produced, compared to only three transgene-free mutants in the spring wheat variety Ningchun 4.

View Article and Find Full Text PDF