98%
921
2 minutes
20
In the centrosymmetric polymeric title compound, {[CoGd(2)(C(14)H(8)N(2)O(5))(4)(H(2)O)(4)]·4H(2)O}(n), the Gd(III) cation is coordinated by one water mol-ecule and four pyridine-4-carboxamido-isophthalate (L) anions in a distorted square-anti-prismatic arrangement, while the Co(II) cation, located on an inversion center, is coordinated by two pyridyl-N atoms, two carboxyl-ate-O atoms and two water mol-ecules in a distorted octa-hedral geometry. The asymmetric unit contains two anionic L ligands: one bridges two Gd cations and one Co cation through two carboxyl groups and one pyridine-N atom; the other bridges two Gd cations and one Co cation through two carboxyl groups and the uncoordinated pyridine-N atom is hydrogen-bonded to the adjacent coordinated water mol-ecule. Extensive O-H⋯O and N-H⋯O hydrogen bonds are present in the crystal structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201412 | PMC |
http://dx.doi.org/10.1107/S1600536811038074 | DOI Listing |
Anal Chim Acta
November 2025
School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of A
Background: Copper is a vital trace element that plays a crucial role in various physiological processes due to its ability to exist in multiple oxidation states. Inspired by natural enzymes, researchers have developed copper-based nanozymes that mimic enzyme functions, offering cost-effective and stable alternatives to traditional enzymes. Despite their promising properties, the design and synthesis of these nanozymes can be complex and challenging.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.
View Article and Find Full Text PDFWater Res
September 2025
State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:
Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
A highly sensitive, selective, and simple method for detecting uranyl ions (UO) is crucial for human health and environmental safety. Amidoxime-based nanomaterials have been widely employed for UO detection, but their higher affinity for vanadium than UO limits their practical applications. Herein, a novel covalent organic polymer fluorescent probe (TT-COP) for UO detection was innovatively developed by a one-step Schiff-base condensation reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and 2,4,6-triformylphloroglucinol (Tp).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Material Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, China. Electronic address:
Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.
View Article and Find Full Text PDF