Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH(4)) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH(4) and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure-function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C(2)-C(4) alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis-this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min(-1) per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C(2)-C(4) alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246247PMC
http://dx.doi.org/10.1038/ismej.2011.98DOI Listing

Publication Analysis

Top Keywords

recombinant expression
12
hydrocarbon monooxygenase
8
c2-c4 alkanes
8
monooxygenase mycobacterium
4
recombinant
4
mycobacterium recombinant
4
expression
4
expression member
4
member ammonia
4
ammonia monooxygenase
4

Similar Publications

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF

Background: Recombinant human thrombopoietin (rhTPO) regulates platelet production by promoting megakaryocyte proliferation and has shown promising therapeutic effects in hematopoietic recovery for severe aplastic anemia (SAA). However, its potential impact on immune cells remains unclear.

Methods: This study included 23 patients with SAA, who were divided into two groups based on whether they received rhTPO.

View Article and Find Full Text PDF

Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.

View Article and Find Full Text PDF

The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.

View Article and Find Full Text PDF