98%
921
2 minutes
20
In eukaryotic organisms, horizontal gene transfer (HGT) is regarded as an important though infrequent source of reticulate evolution. Many confirmed instances of natural HGT involving multicellular eukaryotes come from flowering plants. This review intends to provide a synthesis of present knowledge regarding HGT in higher plants, with an emphasis on tobacco and other species in the Solanaceae family because there are numerous detailed reports concerning natural HGT events, involving various donors, in this family. Moreover, in-depth experimental studies using transgenic tobacco are of great importance for understanding this process. Valuable insights are offered concerning the mechanisms of HGT, the adaptive role and regulation of natural transgenes, and new routes for gene trafficking. With an increasing amount of data on HGT, a synthetic view is beginning to emerge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.1000370 | DOI Listing |
mSphere
September 2025
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.
View Article and Find Full Text PDFWater Res
September 2025
Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:
Health problems arising from antibiotic resistance are a global concern. The Cl-UV disinfection process has shown potential for controlling antibiotic resistance in water; however, the influence of disinfectant dosage on its effectiveness remains insufficiently understood. Can antibiotic resistance be controlled by simply increasing the disinfectant dosage? This study demonstrated that higher disinfectant levels improved antibiotic resistance gene (ARG) removal, with certain ARGs reaching 1.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China. Electronic address:
Antimicrobial resistance is one of the most substantial challenges for global public health. To address the inefficient elimination of intracellular resistance genes (i-ARGs) in antibiotic-resistant bacteria (ARB) by peracetic acid (PAA) oxidation, we developed an integration strategy (NW-EP/EA) of nanowire-confined electroporation (NW-EP) of ARB cells and nanowire-confined electroactivation (NW-EA) of PAA with a sequential oxidation-reduction process. The locally enhanced electric field and electrocatalytic activity over NW tips prompted the formation of electroporation pores on ARB cells and the generation of reactive ⋅OH and RO⋅ radicals by PAA electroactivation.
View Article and Find Full Text PDFMicroorganisms
July 2025
College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China.
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the mechanisms of horizontal gene transfer (HGT) driven by MGEs such as plasmids, transposons, and integrons. We further conduct a comparative critical analysis of the effectiveness and limitations of antibiotics and ARGs remediation strategies for adsorption (biochar, activated carbon, carbon nanotubes), chemical degradation (advanced oxidation processes, Fenton-based systems), and biological treatment (microbial degradation, constructed wetlands).
View Article and Find Full Text PDFGenes (Basel)
August 2025
National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
Background: , a medicinally important species that is rich in bioactive compounds, lacks a characterized mitochondrial genome, despite nuclear and chloroplast assemblies. We sequenced and annotated its mitochondrial genome to elucidate its genetic foundations and evolutionary mechanisms.
Methods: Assembly using Illumina short-reads and Nanopore long-reads was used to characterize the mitochondrial genome.