A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mitochondrial Genome and RNA Editing Tissue Specificity of . | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: , a medicinally important species that is rich in bioactive compounds, lacks a characterized mitochondrial genome, despite nuclear and chloroplast assemblies. We sequenced and annotated its mitochondrial genome to elucidate its genetic foundations and evolutionary mechanisms.

Methods: Assembly using Illumina short-reads and Nanopore long-reads was used to characterize the mitochondrial genome. Analyses included structural characterization, codon usage bias, repetitive sequences, horizontal gene transfer (HGT), collinearity, and phylogeny. The resulting tissue-specific (root, stem, and leaf) long non-coding RNA (lncRNA) profiles identified RNA editing sites.

Results: The complete mitochondrial genome (249,777 bp, 45.5% GC) comprises three circular contigs encoding 51 genes (33 protein-coding, 15 tRNA, and 3 rRNA). Comparative genomics revealed synteny with the Apiaceae family of plants and evidence of HGT. Phylogenetic analysis resolved taxonomic relationships within Apiales. We predicted that 547 RNA editing sites would be identified in its protein-coding genes. Tissue profiling identified 725 (root), 711 (stem), and 668 (leaf) editing sites, with >71% concordance to predictions. RNA editing-generated cryptic promoters/terminators occur in mitochondrial core function genes (e.g., ATP synthase, cytochrome c reductase/oxidase, ribosome large subunit, and cytochrome c biogenesis), exhibiting a lower frequency in the leaves compared to the roots and stems.

Conclusions: We provide the first complete mitochondrial genome assembly for , delineating its complex structure, tissue-modulated RNA editing, and evolutionary trajectory. This high-quality genomic resource establishes a foundation for molecular evolutionary studies and enhances the genomic toolkit for this pharmacologically significant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385686PMC
http://dx.doi.org/10.3390/genes16080953DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
24
rna editing
16
complete mitochondrial
8
editing sites
8
mitochondrial
7
rna
6
editing
5
genome
5
genome rna
4
editing tissue
4

Similar Publications