98%
921
2 minutes
20
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165868 | PMC |
http://dx.doi.org/10.1104/pp.111.182196 | DOI Listing |
Plant Reprod
August 2025
Cell Biology and Plant Biochemistry, University of Regensburg, 93040, Regensburg, Germany.
Key Message:
Abstract: Pollen tube growth requires precise regulation of cell wall integrity, which is maintained by ANX/BUPS-RALF-LLG signaling complexes. While structural and biochemical studies have revealed physical interactions between these components, their spatial organization and assembly dynamics in growing pollen tubes remain unclear. Here, we systematically investigated the subcellular localization and endomembrane trafficking of ANX/BUPS-RALF-LLG complex components through transient expression studies in tobacco pollen tubes.
Insects
August 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China.
Megachilidae are crucial pollinators of cultivated and wild vegetation, playing a vital role in ecosystem pollination services, however, there is still a lack of information regarding the ecology and behavior of these species. This study aims to analyze the nesting ecology strategies of four sympatric species of leafcutting bees and their interactions with pollen source plants. Data were collected from April to October from 2019 to 2022 in the Jiyuan section of the Taihang Mountain National Nature Reserve (approximately 35°10'-35°25' N, 111°55'-112°10' E) using trap nest methods.
View Article and Find Full Text PDFPlant J
August 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
Flavonols have been implicated in male sterility and pollen tube growth for over three decades; however, the molecular mechanisms mediating their accumulation in pollen grains remain poorly understood. In this study, a multidrug and toxic compound extrusion (MATE) transporter, OsMATE7, was identified as a key regulator of flavonol accumulation in mature pollen grains, thereby promoting pollen tube growth in rice (Oryza sativa). Mutation of OsMATE7 resulted in a significant reduction in seed setting rates.
View Article and Find Full Text PDFNew Phytol
August 2025
Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.
Rab GTPases are key regulators of vesicular trafficking, not only switching between active and inactive forms but also cycling between donor/resident and target membranes, a process regulated by factors including guanine nucleotide dissociation inhibitors (RabGDIs), whose function is largely unknown in plants. By reverse genetic approaches, we demonstrate that Arabidopsis RabGDIs redundantly mediate male fertility such that the functional loss of RabGDIs compromises pollen development, germination, and directional growth of pollen tubes. By combining cellular and pharmacological approaches, we demonstrate that RabGDIs are critical for the targeting of Rab GTPases not only in secretory but also in vacuolar pathways.
View Article and Find Full Text PDFPlant Sci
August 2025
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
As primitive angiosperms, bisexual Magnolia species evolved a relatively advanced mating system, namely facultative outcrossing, avoiding inbreeding depression meanwhile providing a certain reproductive assurance. Explosive advances have been made in the molecular understanding of pollen-pistil interactions in the past decades, especially emphasizing the role of FERONIA-RAC/ROP-RBOHD module. However, relevant molecular framework in primitive angiosperms remains largely unknown.
View Article and Find Full Text PDF