98%
921
2 minutes
20
Megachilidae are crucial pollinators of cultivated and wild vegetation, playing a vital role in ecosystem pollination services, however, there is still a lack of information regarding the ecology and behavior of these species. This study aims to analyze the nesting ecology strategies of four sympatric species of leafcutting bees and their interactions with pollen source plants. Data were collected from April to October from 2019 to 2022 in the Jiyuan section of the Taihang Mountain National Nature Reserve (approximately 35°10'-35°25' N, 111°55'-112°10' E) using trap nest methods. Through the dissection of nesting tubes, their structural characteristics were revealed, and the pollen sources collected by the bees were identified. Our results showed that nesting activity of leafcutting bees lasted from May to October, with a preference for nesting tubes of 6 to 10 mm in diameter and 131 to 170 mm in length. We documented 48 plant species used as foraging sources, belonging to 17 orders, 24 families, and 33 genera, with the Fagaceae family (9 species) being predominant. The results indicate that the distinctive traits of these species-such as the asynchronous nesting periods, the types of nesting materials, the dimensions of cavities, and differential utilization of floral resources-likely play a critical role in niche differentiation among sympatric species, thereby ensuring the maintenance and persistence of Megachilidae populations in this region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386985 | PMC |
http://dx.doi.org/10.3390/insects16080831 | DOI Listing |
Ecol Evol
September 2025
Biodiversity Genomics Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland.
Invisible to human perception, differentiation in chemical traits such as insects cuticular hydrocarbons (CHCs) might contribute to speciation. The species-rich mountain butterfly genus represents a well-established model for studying speciation because closely related taxa form stable secondary contact zones. However, to which degree these taxa would also differ in their chemical composition of the cuticle has remained unexplored.
View Article and Find Full Text PDFEcology
September 2025
Graduate Program in Ecology and Evolutionary Biology, Biosciences Rice University, Houston, Texas, USA.
Changes in global temperature regimes are expected to transform species interactions in natural communities. However, predicting the consequences of warming on populations and communities is challenging because species interact with a range of community members. In theory, species should be adapted to their local temperature regimes, which might suggest a parallel shift across species interactions.
View Article and Find Full Text PDFInt J Food Microbiol
September 2025
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:
Honey's unique physicochemical properties create a restrictive environment for most microorganisms, yet support the specialized osmotolerant yeasts with significant ecological roles and biotechnological potential. In this study, we employed an integrated culture-dependent and culture-independent approach to systematically characterize yeast communities in sympatric monofloral chaste (Vitex agnus-castus) honeys from Apis cerana and Apis mellifera colonies in Qingdao, East China. Results consistently showed that A.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, P.R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
As economically important sympatric species in the Northwest Pacific, the Japanese sardine () and Chub mackerel () exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of and from the Northwest Pacific, collected from June to November between 2017 and 2020.
View Article and Find Full Text PDFMol Ecol
September 2025
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
How species adapt to diverse environmental conditions is essential for understanding evolution and the maintenance of biodiversity. The European cisco (Coregonus albula) is a salmonid that occurs in both fresh and brackish water, and this together with the presence of sympatric spring- and autumn-spawning lacustrine populations provides an opportunity for studying the genetics of adaptation in relation to salinity and timing of reproduction. Here, we present a high-quality reference genome of the European cisco based on PacBio HiFi long read sequencing and HiC-directed scaffolding.
View Article and Find Full Text PDF