Publications by authors named "Peter K Hepler"

Background And Aims: Byblis liniflora (Byblidaceae) is a carnivorous plant that has developed sticky flypaper traps with two types of glandular trichomes producing digestive enzymes and sticky mucilage. This study aimed to analyse the ultrastructure of these glandular leaf trichomes based on rapid freeze-fixation and conventional chemical fixation in the attempt to understand their functional contribution to the carnivorous performance of the plants.

Methods: The Byblis cells were studied in transmission electron microscopy, scanning electron microscopy and scanning transmission electron microscopy using cryo-techniques for fixation and substitution in addition to conventional chemical fixation.

View Article and Find Full Text PDF

There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent.

View Article and Find Full Text PDF

The shape of the apical region of lily pollen tube changes rhythmically as the growth rate of the tube oscillates becoming alternately more prolate then back to oblate. We quantified shape change by calculating the curvature of the cross-sectional edge of the pollen tube tip and cross-correlating curvature changes with growth rate. The apical region takes the form of a partial elliptical spheroid, with variation in the length and location of the minor axis.

View Article and Find Full Text PDF

Glands of Drosera absorb and transport nutrients from captured prey, but the mechanism and dynamics remain unclear. In this study, we offered animal proteins in the form of fluorescent albumin (FITC-BSA) and observed the reactions of the glands by live cell imaging and fluorescence microscopy. The ultrastructure of these highly dynamic processes was also assessed in high-pressure frozen and freeze substituted (HPF-FS) cells.

View Article and Find Full Text PDF

Tip growth is a focused and tightly regulated apical explosion that depends on the interconnected activities of ions, the cytoskeleton, and the cell wall.

View Article and Find Full Text PDF

Dynein mediates spindle positioning in budding yeast by pulling on astral microtubules (MTs) from the cell cortex. The MT-associated protein She1 regulates dynein activity along astral MTs and directs spindle movements toward the bud cell. In addition to localizing to astral MTs, She1 also targets to the spindle, but its role on the spindle remains unknown.

View Article and Find Full Text PDF

Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily ( Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate.

View Article and Find Full Text PDF

Calcium and protons exert control over the formation and activity of the cytoskeleton, usually by modulating an associated motor protein or one that affects the structural organization of the polymer.

View Article and Find Full Text PDF

Pollen tubes usually exhibit a prominent region at their apex called the "clear zone" because it lacks light refracting amyloplasts. A robust, long clear zone often associates with fast growing pollen tubes, and thus serves as an indicator of pollen tube health. Nevertheless we do not understand how it arises or how it is maintained.

View Article and Find Full Text PDF

In lily (Lilium formosanum) pollen tubes, pectin, a major component of the cell wall, is delivered through regulated exocytosis. The targeted transport and secretion of the pectin-containing vesicles may be controlled by the cortical actin fringe at the pollen tube apex. Here, we address the role of the actin fringe using three different inhibitors of growth: brefeldin A, latrunculin B, and potassium cyanide.

View Article and Find Full Text PDF

In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics.

View Article and Find Full Text PDF

We pay tribute to the seminal paper 'A microtubule in plant cell fine structure' by Myron C. Ledbetter and Keith R. Porter (1963) by summarizing the very limited knowledge of plant cell ultrastructure that we had prior to that publication, and, by way of our three retrospective accounts, show how this paper stimulated and influenced subsequent research on plant microtubules.

View Article and Find Full Text PDF

Coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell's ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. The plasma membrane (PM) Na⁺/H⁺ antiporter (SOS1) is involved in salt tolerance, presumably in sodium extrusion; the vacuolar type I H⁺-PPase AVP1 is involved in vacuolar sodium sequestration, but its overexpression has also been shown to alter the abundance and activity of the PM H⁺-ATPase. Here we investigate the relationship between these transporters utilizing loss-of-function mutants of SOS1 (sos1) and increased expression of AVP1 (AVP1OX).

View Article and Find Full Text PDF

Growing pollen tubes require calcium to maintain a tip-focused cytosolic gradient and as a constituent of the constantly expanding cell wall. Advances in cell and molecular biology as well as electrophysiology implicate several candidate channels and receptors in the flow of calcium into the cell. In this review we discuss the channels that have been identified and consider the role of the growing tip cell wall acting as a sink for calcium thus accounting for differences in oscillatory phase between influx measured on the outside of the cell and changes in tip concentration inside the cell.

View Article and Find Full Text PDF

We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes.

View Article and Find Full Text PDF

The primary goal of our previous opinion paper (Winship, L.J. et al.

View Article and Find Full Text PDF

Background: Pollen tubes grow by transferring chemical energy from stored cellular starch and newly assimilated sugars into ATP. This drives myriad processes essential for cell elongation, directly or through the creation of ion gradients. Respiration plays a central role in generating and regulating this energy flow and thus in the success of plant reproduction.

View Article and Find Full Text PDF

Significant controversy still swirls around the regulation of extension by tip-growing cells, particularly during stable, oscillatory growth of pollen tubes. One explanation proposes that turgor pressure is both the controlling and driving force. We refute this hypothesis on theoretical and evidentiary grounds.

View Article and Find Full Text PDF

Attention is given to the role of Ca(2+) at the interface between the cell wall and the cytoplast, especially as seen in pollen tubes. While the cytoplasm directs the synthesis and deposition of the wall, it is less well appreciated that the wall exerts considerable self control and influences activities of the cytoplasm. Ca(2+) participates as a crucial factor in this two way communication.

View Article and Find Full Text PDF

Oscillatory tip growth in pollen tubes depends on prodigious amounts of energy. We have tested the hypothesis that oscillations in the electron transport chain lead to growth oscillations in lily (Lilium formosanum). Using three respiratory inhibitors, oligomycin, antimycin A, and cyanide, we find that pollen tube growth is much less sensitive to respiratory inhibition than respiration is.

View Article and Find Full Text PDF

We examined exocytosis during oscillatory growth in lily (Lilium formosanum and Lilium longiflorum) and tobacco (Nicotiana tabacum) pollen tubes using three markers: (1) changes in cell wall thickness by Nomarski differential interference contrast (DIC), (2) changes in apical cell wall fluorescence in cells stained with propidium iodide (PI), and (3) changes in apical wall fluorescence in cells expressing tobacco pectin methyl esterase fused to green fluorescent protein (PME-GFP). Using PI fluorescence, we quantified oscillatory changes in the amount of wall material from both lily and tobacco pollen tubes. Measurement of wall thickness by DIC was only possible with lily due to limitations of microscope resolution.

View Article and Find Full Text PDF

Background: Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments.

View Article and Find Full Text PDF

Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network.

View Article and Find Full Text PDF