Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tetrapyrroles are ubiquitous molecules in nearly all living organisms. Heme, an iron-containing tetrapyrrole, is widely distributed in nature, including most characterized aerobic and facultative bacteria. A large majority of bacteria that contain heme possess the ability to synthesize it. Despite this capability and the fact that the biosynthetic pathway has been well studied, enzymes catalyzing at least three steps have remained "missing" in many bacteria. In the current work, we have employed comparative genomics via the SEED genomic platform, coupled with experimental verification utilizing Acinetobacter baylyi ADP1, to identify one of the missing enzymes, a new protoporphyrinogen oxidase, the penultimate enzyme in heme biosynthesis. COG1981 was identified by genomic analysis as a candidate protein family for the missing enzyme in bacteria that lacked HemG or HemY, two known protoporphyrinogen oxidases. The predicted amino acid sequence of COG1981 is unlike those of the known enzymes HemG and HemY, but in some genomes, the gene encoding it is found neighboring other heme biosynthetic genes. When the COG1981 gene was deleted from the genome of A. baylyi, a bacterium that lacks both hemG and hemY, the organism became auxotrophic for heme. Cultures accumulated porphyrin intermediates, and crude cell extracts lacked protoporphyrinogen oxidase activity. The heme auxotrophy was rescued by the presence of a plasmid-borne protoporphyrinogen oxidase gene from a number of different organisms, such as hemG from Escherichia coli, hemY from Myxococcus xanthus, or the human gene for protoporphyrinogen oxidase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147383PMC
http://dx.doi.org/10.1128/AEM.00171-11DOI Listing

Publication Analysis

Top Keywords

protoporphyrinogen oxidase
20
hemg hemy
12
oxidase activity
8
genomic analysis
8
protoporphyrinogen
6
heme
6
oxidase
5
discovery gene
4
gene involved
4
involved third
4

Similar Publications

Recent advances in the discovery of novel bleaching herbicides inspired by natural products.

Pestic Biochem Physiol

November 2025

Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Pigment biosynthesis serves as a fundamental physiological process vital for weeds survival. Disruption of this pathway leads to the depletion of critical pigments, ultimately resulting in weeds death. Consequently, pigment biosynthesis has become a valuable target in modern herbicide development.

View Article and Find Full Text PDF

In continuation of our efforts to identify novel herbicide lead compounds, twenty new 5-(1-amino-4-phenoxybutylidene)barbituric acid derivatives containing an enamino diketone motif were synthesized and evaluated for their herbicidal activities. The greenhouse bioassay results indicated that several of the target compounds, including , , , , and , exhibited notable post-emergence herbicidal activity, with sum inhibition rates exceeding 70% at a dosage of 150 g ha, which was superior to that of the commercial herbicide flumiclorac-pentyl (FP). The structure-activity relationship analysis demonstrated that the steric and electronic effects of the R group, as well as the lipophilicity of the target compounds, significantly influenced herbicidal activity.

View Article and Find Full Text PDF

Novel Phenylpyrazole Derivatives Containing Carbonic Ester Moieties as Protoporphyrinogen IX Oxidase Inhibitors.

J Agric Food Chem

September 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.

Protoporphyrinogen IX oxidase (PPO) is an essential enzyme in the chlorophyll synthesis process in plants, making it a major target for the advancement of environmentally safe herbicides. In order to develop new PPO inhibition herbicides, a series of novel pyrazole derivatives containing carbonic ester moieties were synthesized based on the active splicing principle and structural simplification strategy. In bioassays, it was found that the majority of the target compounds had a good inhibitory effect on PPO (PPO) and displayed herbicidal activity against the tested weeds.

View Article and Find Full Text PDF

Identification of Novel Pyrazole-Diphenyl Ether Hybrids as Potential HPPD/PPO Dual-Target Inhibitors.

J Agric Food Chem

September 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) and protoporphyrinogen oxidase (PPO) are recognized as pivotal targets for the development of environmentally friendly herbicides. In this work, a series of pyrazole derivatives containing a diphenyl ether moiety were designed and synthesized as dual-targeted HPPD/PPO inhibitors using pharmacophore merging and linking design strategies. The bioassays demonstrated that compound exhibited the best inhibitory activity against both HPPD (HPPD) and PPO (PPO) with the IC values of 0.

View Article and Find Full Text PDF

Weeds significantly impact crop yields, and pyrimidinedione herbicides remain essential for weed control. Protoporphyrinogen IX oxidase (PPO, EC 1.3.

View Article and Find Full Text PDF