Estradiol and tamoxifen differentially regulate a plasmalemmal voltage-dependent anion channel involved in amyloid-beta induced neurotoxicity.

Steroids

Laboratory of Cellular Neurobiology, Department of Physiology & Institute of Biomedical Technologies, University of La Laguna, School of Medicine, Santa Cruz de Tenerife, Spain.

Published: August 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is a wealth of information indicating that estradiol exerts rapid actions involved in neuroprotection and cognitive-enhancing effects. Some of these effects appear to delay onset, or even ameliorate, the neuropathology of Alzheimer's disease (AD), although some controversy exists about the beneficial brain effects of estrogen therapies. Therefore, it is crucial to better understand the mechanisms developed by 17β-estradiol to signal in the brain. At the neuronal membrane, the hormone can rapidly interact with estrogen receptors (mERs) or activate other receptors, such as G protein-coupled and ionotropic receptors. And the list of membrane signalling molecules modulated by estradiol in neurons is increasing. VDAC is a voltage-dependent anion channel, known as a mitochondrial porin which is also found at the neuronal membrane, where it appears to be involved in redox regulation, extrinsic apoptosis and amyloid beta neurotoxicity. Moreover, VDAC is present in neuronal lipid rafts, where it is associated with estrogen receptor α-like (mER), forming part of a macromolecular complex together with caveolin-1 and other signalling proteins related to neuronal preservation. Interestingly, we have recently found that 17β-estradiol rapidly promotes VDAC phosphorylation through the activation of protein kinase A (PKA) and Src-kinase, which may be relevant to maintain this channel inactivated. On the contrary, tamoxifen, a selective estrogen receptor modulator (SERM), provokes the dephosphorylation of VDAC, and eventually its opening, by activating a cascade of phosphatases, including protein phosphatase 2 (PP2A). This review will focus on the relevance of these novel findings in the alternative estrogen mechanisms to achieve neuroprotection related to AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2011.02.014DOI Listing

Publication Analysis

Top Keywords

voltage-dependent anion
8
anion channel
8
neuronal membrane
8
estrogen receptor
8
estrogen
5
estradiol tamoxifen
4
tamoxifen differentially
4
differentially regulate
4
regulate plasmalemmal
4
plasmalemmal voltage-dependent
4

Similar Publications

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF

[Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.

Objectives: To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.

Methods: Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Liquorice (Gancao), a classic Chinese herb, has been historically prescribed for inflammation and gastrointestinal disorders. Its bioactive flavonoid liquiritigenin (4',7-dihydroxyflavone) exhibits anti-inflammatory properties, yet its efficacy against acute pancreatitis (AP) remains unexplored.

Aim: To systematically investigate the therapeutic potential of liquiritigenin against AP and decipher its estrogen receptor beta (ERβ)-mediated mitochondrial regulatory mechanisms.

View Article and Find Full Text PDF

Mitochondrial sORF-Encoded Peptide MODICA Protects the Heart From Doxorubicin-Induced Cardiac Injury by Suppressing VDAC Oligomerization.

Circ Heart Fail

September 2025

Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (J.W., K.L., Y.Y., X.X., T.X., H.X., H.Z., T.D., Y.L., C.L., X.L., Y.D., J.-S.O., Y.C., Z.-P.H.).

Background: Doxorubicin (DOX) cardiotoxicity increases cardiovascular risk in cancer patients, mainly through mitochondrial damage. However, the underlying mechanisms remain unclear, and whether mitochondrial short open reading frame-encoded peptides can mitigate DOX-induced cardiotoxicity is unknown.

Methods: Five adeno-associated viruses expressing mitochondrial short open reading frame-encoded peptides under the cardiac troponin T promoter, including MODICA (mito-SEP protector against DOX-induced cardiac injury), were screened in a DOX-induced cardiotoxicity mouse model (n=3-5 per group).

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 is an integral outer membrane protein of the mitochondria that governs apoptosis, enables metabolite exchange, and influences mitochondrial activity. In neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and Alzheimer's disease, oxidative stress, neuroinflammation, and mitochondrial dysfunction are frequent features. Voltage-dependent anion channel 1 is a key regulator of these processes.

View Article and Find Full Text PDF