98%
921
2 minutes
20
This paper describes the design and preparation of the non-biological components (the "hardware") of a conceptually novel bioartificial pancreas (BAP) to correct diabetes. The key components of the hardware are (1) a thin (5-10 microm) semipermeable amphiphilic co-network (APCN) membrane [i.e., a membrane of cocontinuous poly(dimethyl acryl amide) (PDMAAm)/polydimethylsiloxane (PDMS) domains cross-linked by polymethylhydrosiloxane (PMHS)] expressly created for macroencapsulation and immunoisolation of a tissue graft; (2) an electrospun nanomat of PDMS-containing polyurethane to reinforce the water-swollen APCN membrane; and (3) a perforated hollow-ribbon nitinol scaffold to stiffen and provide geometric stability to the construct. The reinforcement of water-swollen hydrogels with an electrospun nanomat is a generally applicable new method for hydrogel reinforcement. Details of device design and preparation are discussed. The advantages and disadvantages of micro- and macro-immunoisolation are analyzed, and the requirements for the ideal immunoisolatory membrane are presented. Burst pressure, and glucose and insulin permeabilities of representative devices have been determined and the effect of device composition and wall thickness on these properties is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-008-9236-x | DOI Listing |
Drugs Aging
September 2025
Dalla Lana School of Public Health, University of Toronto, V1 06, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.
View Article and Find Full Text PDFAnalyst
September 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China.
: The objective of this study is to develop a straightforward and expeditious clinical detection method for meropenem. This study aims to introduce an innovative nanoenzyme design, thereby broadening the application of platinum nanomaterials in biological detection. It seeks to facilitate the portable detection of meropenem using commercial software.
View Article and Find Full Text PDFSmall
September 2025
College of Environment and Climate, Jinan University, Guangzhou, 511443, China.
Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.
View Article and Find Full Text PDFMater Horiz
September 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Advanced Polymer Materials, Chengdu, 610065, Sichuan, China.
Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared.
View Article and Find Full Text PDFRetin Cases Brief Rep
October 2024
Eye Clinic, Humanitas-Gradenigo Hospital, Torino, Italy.
Purpose: To study the efficacy and safety of pro re nata regimen of brolucizumab, without loading dose, in treatment-naive patients with neovascular age-related macular degeneration (nAMD).
Case Series: Retrospective, observational study. We included all consecutive patients diagnosed with treatment- naïve nAMD undergoing Brolucizumab in Humanitas eye clinic, Turin, Italy between April 2022 and May 2023.