Butyltin compounds and their relation with organic matter in marine sediments from San Vicente Bay-Chile.

Environ Monit Assess

Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, P.O. Box 4059, Valparaíso, Chile.

Published: August 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tributyltin and its degradation products, mono-and dibutyltin have been determined in sediments collected in some representative sites in San Vicente Bay, Chile. The organic matter contents of sediments and water collected simultaneously from the same sampling sites were also determined. High levels of total organic carbon were found in sediments, especially in those from the northern part of the bay (1.80-8.87%). Good correlations were found between total organic carbon and the oxidizable and refractory carbon fractions. Among the butyltin species determined, TBT presented the highest levels, ranging from 14 to 1,560 ng Sn g(-1) dry weight. Concentration ratios of TBT to DBT ranged between 1.33 and 3.10, showing a high degree of contamination in sediments of this Chilean bay. All data obtained were analysed by the chemometric method of principal components analysis. A strong correlation was found between TBT and DBT concentrations in sediments, the different organic matter contents in sediments and water. In marine organisms only TBT was detected, containing the filterer organism Semele solida higher level than Perumytilus purpuratus and Pyura chilensis (220, 150 and 120 ng Sn g(-1) dry weight, respectively). For the alga Rodoficea iridae the TBT concentration was 60 ng Sn g(-1) dw. Comparatively, these values are higher than those reported for the same kind of marine organisms worldwide. The different samples from San Vicente Bay were found to be contaminated by TBT. This contamination can be attributed to the different anthropogenic activities taking place in the bay.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-008-0439-7DOI Listing

Publication Analysis

Top Keywords

organic matter
12
san vicente
12
vicente bay
8
matter contents
8
contents sediments
8
sediments water
8
total organic
8
organic carbon
8
g-1 dry
8
dry weight
8

Similar Publications

Indole-based natural product for plant protection: Discovery of alkaloid barrettin and its derivatives as novel antiviral and antifungal agents.

Pestic Biochem Physiol

November 2025

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.

View Article and Find Full Text PDF

Adsorption-desorption behavior of difenoconazole onto soils: Kinetics, isotherms, and influencing factors.

Pestic Biochem Physiol

November 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj

Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.

View Article and Find Full Text PDF

The Brazilian Amazon estuary is a highly dynamic environment, characterized by substantial organic matter input and a rich diversity of fish species that utilize this ecosystem for feeding and reproduction. Despite its ecological relevance, ichthyo-parasitological research in the region remains limited, particularly regarding the diversity of parasitic species within the class Myxozoa. Among the fish species for which parasitological data are still scarce is the Pacamã frogfish, Batrachoides surinamensis (Bloch and Schneider, 1801), a demersal species that feeds on small invertebrates and fish.

View Article and Find Full Text PDF

Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.

View Article and Find Full Text PDF