Modulation of cortical activity as a result of voluntary postural sway direction: an EEG study.

Neurosci Lett

Department of Kinesiology, The Pennsylvania State University, 19 Recreation Building, University Park, PA 16802, USA.

Published: September 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is increasing evidence demonstrating the role of the cerebral cortex in human postural control. Modulation of EEG both in voltage and frequency domains has been observed preceding and following self-paced postural movements and those induced by external perturbations. The current study set out to provide additional evidence regarding the role of cerebral cortex in human postural control by specifically examining modulation of EEG as a function of postural sway direction. Twelve neurologically normal subjects were instructed to produce self-paced voluntary postural sways in the anterior-posterior (AP) and medial-lateral (ML) directions. The center of pressure dynamics and EEG both in voltage and frequency domains were extracted by averaging and Morlet wavelet techniques, respectively. The amplitude of movement-related cortical potentials (MRCP) was significantly higher preceding ML sways. Also, time-frequency wavelet coefficients (TF) indicated differential modulation of EEG within alpha, beta and gamma bands as a function of voluntary postural sway direction. Thus, ML sway appear to be more difficult and energy demanding tasks than the AP sway as reflected in differential modulation of EEG. These results are discussed within the conceptual framework of differential patterns of brain activation as a result of postural task complexity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546523PMC
http://dx.doi.org/10.1016/j.neulet.2008.07.021DOI Listing

Publication Analysis

Top Keywords

modulation eeg
16
voluntary postural
12
postural sway
12
sway direction
12
postural
8
role cerebral
8
cerebral cortex
8
cortex human
8
human postural
8
postural control
8

Similar Publications

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.

View Article and Find Full Text PDF

Study Objectives: There are large individual differences in the homeostatic response to sleep deprivation, as reflected in slow wave sleep (SWS) and electroencephalogram (EEG) spectral power, which have largely been left unexplained. Recent evidence suggests the possible involvement of the activity-regulated cytoskeleton-associated protein () gene. Here we assessed the effects of the "c.

View Article and Find Full Text PDF

CT-Optimal Stimulation Modulates Somatosensory Processing.

Psychophysiology

September 2025

Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, Universidade do Minho, Braga, Portugal.

Touch has an affective dimension, conveyed through low-threshold mechanoreceptors known as C-tactile (CT) afferents, which are activated by gentle, caress-like contact. While there is evidence that these fibers modulate nociceptive input, their influence on the processing of other somatosensory afferent activity remains largely unknown. In this study, we explored how slow brushing (CT-optimal stimulation) modulates somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve (occurring at 0.

View Article and Find Full Text PDF

Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.

View Article and Find Full Text PDF