98%
921
2 minutes
20
Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models. However, the extent of variability in cortical network alterations across different genetic backgrounds and ages is still not clearly defined.
Objective: To evaluate the oscillatory alterations in relation to animal developmental age and hyperphosphorylated tau protein accumulation, we reviewed and analyzed the published data on peak power and quantification of theta-gamma cross-frequency coupling (modulation index values).
Methods: A systematic review was conducted to locate and extract all studies published from January, 2002 to March, 2024 involving cortical local field potential recording in tau transgenic mouse models, ensuring the most current search results. Our meta-analysis was conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines.
Results: The presence of hyperphosphorylated tau was associated with oscillatory alterations primarily reflected in power decreases, while modulation index values did not exhibit significant alterations.
Conclusions: In this analysis, we uncovered that neuronal oscillations in cortical networks are altered from the prodromal to late stages of pathology. Additionally, we found that hyperphosphorylated tau accumulation is strongly associated with cortical network hypoexcitability in tau transgenic models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/JIN39192 | DOI Listing |
Gen Physiol Biophys
September 2025
Department of Neurology, Hubei Third People's Hospital of Jianghan University, Wuhan, China.
In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14203, US.
Hyperphosphorylation of Tau and the ensuing microtubule destabilization are linked to synaptic dysfunction in Alzheimer's disease (AD). We find a marked increase of phosphorylated Tau (pTau) in cortical neurons differentiated from induced pluripotent stem cells (iPSCs) of AD patients. It is accompanied by significantly elevated expression of Serum and Glucocorticoid-regulated Kinase-1 (SGK1), which is induced by cellular stress, and Histone Deacetylase 6 (HDAC6), which deacetylates tubulin to destabilize microtubules.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
CIBA Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, 76010 Querétaro, México.
Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFTurk J Biol
June 2025
Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, Turkiye.
Background/aim: Tau protein, which is crucial for sustaining the cytoskeletal network by assisting microtubule construction, contributes significantly to the pathophysiology of Alzheimer's disease (AD). The hyperphosphorylation of tau causes it to detach from microtubules (MTs), leading to the formation of neurofibrillary tangles (NFTs) in neurons, which ultimately results in cell death. Thionine (TH), a cationic phenothiazine-structured compound, has been the topic of extensive research due to its interesting physicochemical properties.
View Article and Find Full Text PDF