Publications by authors named "Siddhartha Mondragon-Rodriguez"

Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.

View Article and Find Full Text PDF

Transcranial stimulation has emerged as a non-invasive treatment that applies electrical currents and magnetic fields to regulate brain functions. Previous studies have shown that magnetic stimulation modulates the dynamics of charged molecules in biological systems. In some pathologies, once the electrical or magnetic field is applied directly to subjects, it can interact with, and alter, abnormally folded proteins, including amyloid-peptides and their aggregates, reducing cognitive impairments.

View Article and Find Full Text PDF

Background: Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD.

View Article and Find Full Text PDF

Background: Tau hyperphosphorylation at several sites, including those close to its microtubule domain (MD), is considered a key pathogenic event in the development of tauopathies. Nevertheless, we recently demonstrated that at the very early disease stage, tau phosphorylation (pTau) at MD sites promotes neuroprotection by preventing seizure-like activity.

Objective: To further support the notion that very early pTau is not detrimental, the present work evaluated the young rTg4510 mouse model of tauopathy as a case study.

View Article and Find Full Text PDF

Transgenic mice have been used to make valuable contributions to the field of neuroscience and model neurological diseases. The simultaneous functional analysis of hippocampal cell activity combined with hippocampal dependent innate task evaluations provides a reliable experimental approach to detect fine changes during early phases of neurodegeneration. To this aim, we used a merge of patch-clamp with two hippocampal innate behavior tasks.

View Article and Find Full Text PDF

For more than five decades, the field of Alzheimer's disease (AD) has focused on two main hypotheses positing amyloid-beta (A) and Tau phosphorylation (pTau) as key pathogenic mediators. In line with these canonical hypotheses, several groups around the world have shown that the synaptotoxicity in AD depends mainly on the increase in pTau levels. Confronting this leading hypothesis, a few years ago, we reported that the increase in phosphorylation levels of dendritic Tau, at its microtubule domain (MD), acts as a neuroprotective mechanism that prevents N-methyl-D-aspartate receptor (NMDAr) overexcitation, which allowed us to propose that Tau protein phosphorylated near MD sites is involved in neuroprotection, rather than in neurodegeneration.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and tau proteins, which are believed to lead to neural damage that translates into brain dysfunction and cognitive deficits. Brain dysfunction can be evaluated by measuring single-neuron activity (spikes), global neural activity (local field potentials, LFPs) and the interaction between them. Considering that the dynamic interactions between the hippocampal pyramidal cells and lateral septum are important for proper structure function, we used the complete septo-hippocampal preparation from 30-day-old controls and J20-AD transgenic mice to record changes in spiking activity from the lateral septum and its relationship with LFP activity from the CA1 area.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is defined by the presence of amyloid-β (Aβ) and tau protein aggregates. However, increasing data is suggesting that brain network alterations rather than protein deposition could account for the early pathogenesis of the disease. In the present study, we performed extracellular field recordings in the CA1/subiculum area of the hippocampus from 30 days old J20-TG-AD mice.

View Article and Find Full Text PDF

Tau hyperphosphorylation at several sites, including those close to the microtubule domain region (MDr), is considered a key pathological event in the development of Alzheimer's disease (AD). Recent studies indicate that at the very early stage of this disease, increased phosphorylation in Tau's MDr domain correlates with reduced levels of neuronal excitability. Mechanistically, we show that pyramidal neurons and some parvalbumin-positive interneurons in 1-month-old triple-transgenic AD mice accumulate hyperphosphorylated Tau protein and that this accumulation correlates with changes in theta oscillations in hippocampal neurons.

View Article and Find Full Text PDF

Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer's disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aβ) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells were decreased in the hippocampus of 1 month-old TgCRND8 mouse AD model in a sub-regionally specific manner.

View Article and Find Full Text PDF

Background: The last two decades have seen a great advance in the data that supports the two current hypotheses in Alzheimer`s disease field, the amyloid beta hypothesis and the tau hypothesis. Not surprisingly, Aβ and tau proteins are currently the major therapeutic research targets for AD treatment. Unfortunately, nothing but moderate success has emerged from such therapeutic approaches.

View Article and Find Full Text PDF

Background: In Alzheimer disease (AD), hyperphosphorylation of tau proteins results in microtubule destabilization and cytoskeletal abnormalities. Our prior ultra-morphometric studies documented a clear reduction in microtubules in pyramidal neurons in AD compared to controls, however, this reduction did not coincide with the presence of paired helical filaments. The latter suggests the presence of compensatory mechanism(s) that stabilize microtubule dynamics despite the loss of tau binding and stabilization.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is defined by the concurrence of abnormal aggregates composed of phosphorylated tau protein and of abnormal cellular changes including neurite degeneration, loss of neurons, and loss of cognitive functions. While a number of mechanisms have been implicated in this complex disease, oxidative stress remains one of the earliest and strongest events related to disease progression. However, the mechanism that links oxidative stress and cognitive decline remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Amyloid-β and tau protein are key players in Alzheimer’s disease pathology, with recent research highlighting the role of phosphorylated tau on synaptic functions.* -
  • Endogenous tau is located at postsynaptic sites, interacting with the PSD95-NMDA receptor complex, which is important for synaptic signaling.* -
  • Activation of NMDA receptors causes specific phosphorylation of tau, potentially regulating its interaction with Fyn and preventing excessive NMDA receptor activation.*
View Article and Find Full Text PDF

Glycogen synthase kinase 3 (GSK3) has been implicated in neurological disorders; therefore, it is not surprising that there has been an increased focus towards developing therapies directed to this kinase. Unfortunately, these current therapies have not taken into consideration the physiological role of GSK3 in crucial events like synaptic plasticity. With this in mind we will discuss the relationship of synaptic plasticity with GSK3 and tau protein and their role as potential targets for the development of therapeutic strategies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ) and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit.

View Article and Find Full Text PDF

Amyloid plaques and neurofibrillary tangles are the hallmarks of Alzheimer's disease and have been the focus of disease etiology and pathogenesis. However, in the larger picture of a complex disease, the precise etiology of the lesions per se, as well as the clinical disease, remain to be defined. In this regard, to date no single process has been identified as a useful target and treatment efforts have shown no meaningful progress.

View Article and Find Full Text PDF

Abnormal posttranslational modifications of tau protein lead it to aggregate into paired helical filaments in Alzheimer's disease (AD). The mechanisms involved in the early pathological processing of tau and the induction of a polymeric state seem to progress through a sequential pattern of changes mainly involving abnormal phosphorylation, conformational changes and truncation. While proteolytic cleavage of tau protein during the progression of AD has not been comprehensively analyzed, tau is a substrate for several intracellular proteases.

View Article and Find Full Text PDF

Phosphorylation, cleavage and conformational changes in tau protein all play pivotal roles during Alzheimer's disease (AD). In an effort to determine the chronological sequence of these changes, in this study, using confocal microscopy, we compared phosphorylation at several sites (Ser(199/202/396/404/422)-Thr(205) and the second repeat domain), cleavage of tau (D(421)) and the canonical conformational Alz-50 epitope. While all of these posttranslational modifications are found in neurofibrillary tangles (NFTs) at all stages of the disease, we found significantly higher numbers of phospho-tau positive NFTs when compared with cleaved tau (P = 0.

View Article and Find Full Text PDF