Tau, Amyloid Beta and Deep Brain Stimulation: Aiming to Restore Cognitive Deficit in Alzheimer's Disease.

Curr Alzheimer Res

Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México. Boulevard Juriquilla 3001, Juriquilla, 76230 Santiago de Querétaro, Qro, México.

Published: October 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The last two decades have seen a great advance in the data that supports the two current hypotheses in Alzheimer`s disease field, the amyloid beta hypothesis and the tau hypothesis. Not surprisingly, Aβ and tau proteins are currently the major therapeutic research targets for AD treatment. Unfortunately, nothing but moderate success has emerged from such therapeutic approaches. With this in mind, we will discuss deep brain stimulation as a promising therapeutic strategy that aims to restore brain activity. Lastly, in the scope of cognitive deficit restoration, we will discuss the relevance of the limbic formation as a promising neuroanatomical target for deep brain stimulation.

Methods: Immunohistochemistry for modified tau (phosphorylated at Ser199-202-Thr205 labelled by the antibody AT8) was performed on paraffin-embedded human brain sections providing a detailed characterization of NFT pathology.

Results: Abnormally phosphorylated tau protein is the key common marker in several brain diseases such as Alzheimer's disease, Parkinson`s disease, Pick Disease, Down syndrome and frontotemporal dementia and is capable of affecting synaptic events that are critical for memory formation. With this in mind, therapeutic strategies aiming to restore synaptic events could offer better outcomes.

Conclusion: The humble success of current therapeutic strategies along with the lack of basic knowledge of the brain disease mechanisms calls for alternatives that benefit patients in the present moment. One of particular interest is the neurostimulation strategy that is already a well-established treatment for several movement disorders and when compared to current Alzheimer`s therapeutic strategies, deep brain stimulation does not directly interfere with the normal protein function, therefore increasing the probability of success.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567205013666160819131336DOI Listing

Publication Analysis

Top Keywords

deep brain
16
brain stimulation
12
therapeutic strategies
12
amyloid beta
8
brain
8
aiming restore
8
cognitive deficit
8
alzheimer's disease
8
will discuss
8
synaptic events
8

Similar Publications

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Effectiveness of deep brain stimulation in alleviating treatment-resistant schizophrenia: a systematic review.

Eur J Transl Myol

September 2025

Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan.

The complexity of schizophrenia, particularly in cases resistant to traditional pharmacological treatments, poses significant challenges for clinicians and researchers. This systematic review synthesizes existing evidence on the effectiveness of deep brain stimulation in treating treatment-resistant schizophrenia. Utilizing the PRISMA 2020 guidelines, a comprehensive literature search was conducted in March 2025 using the "Connected Papers" tool and other sources such as Web of Science, PubMed, PsycINFO, Embase, and Scopus, focusing on studies related to "deep brain stimulation," "treatment-resistant schizophrenia," and "refractory schizophrenia.

View Article and Find Full Text PDF

Electrical deep brain stimulation is effective for epilepsy suppression, but will lead to neural tissue damage and inflammation due to implantation of electrodes and a pulse generator. Transcranial magnetic and transcranial ultrasound stimulation cannot directly generate effective electrical signals in deep brain regions. Here, the use of piezoelectric nanoparticles is proposed as wireless nanostimulators for deep brain electrical stimulation and minimally invasive suppression of epilepsy.

View Article and Find Full Text PDF

Cerebral infarction is a rare but serious complication after pulmonary resection for lung cancer. A 78-year-old man with hypertension and diabetes underwent video-assisted thoracoscopic right middle lobectomy for stage IA2 adenocarcinoma. On postoperative day 1, he developed acute right hemiparesis and motor aphasia.

View Article and Find Full Text PDF

Integrating clinical anxiety scales with pre-trained language models for anxiety recognition on social media.

Health Inf Sci Syst

December 2025

Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 China.

Leveraging natural language processing to identify anxiety states from social media has been widely studied. However, existing research lacks deep user-level semantic modeling and effective anxiety feature extraction. Additionally, the absence of clinical domain knowledge in current models limits their interpretability and medical relevance.

View Article and Find Full Text PDF