Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tetrapyrrole compounds, such as chlorophylls, hemes, and phycobilins, are synthesized in many enzymatic steps. For regulation of the tetrapyrrole metabolic pathway, it is generally considered that several specific isoforms catalyzing particular enzymatic steps control the flow of tetrapyrrole intermediates by differential regulation of gene expression depending on environmental and developmental factors. However, the coordination of such regulatory steps and orchestration of the overall tetrapyrrole metabolic pathway are still poorly understood. In this study, we developed an original mini-array system, which enables the expression profiling of each gene involved in tetrapyrrole biosynthesis simultaneously with high sensitivity. With this system, we performed a transcriptome analysis of Arabidopsis seedlings in terms of the onset of greening, endogenous rhythm, and developmental control. Data presented here clearly showed that based on their expression profiles at the onset of greening, genes involved in tetrapyrrole biosynthesis can be classified into four categories, in which genes are coordinately regulated to control the biosynthesis. Moreover, genes in the same group were similarly controlled in an endogenous rhythmic manner but also by a developmental program. The physiological significance of these gene clusters is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC520805PMC
http://dx.doi.org/10.1104/pp.104.042408DOI Listing

Publication Analysis

Top Keywords

tetrapyrrole metabolic
12
metabolic pathway
12
gene expression
8
expression profiling
8
mini-array system
8
enzymatic steps
8
involved tetrapyrrole
8
tetrapyrrole biosynthesis
8
onset greening
8
tetrapyrrole
7

Similar Publications

Coronary artery atherosclerosis (CAA) stands as a prominent etiological contributor to global cardiovascular morbidity and mortality. Its pathogenesis entails intricate interplays among genetic predisposition, environmental factors, and lifestyle determinants. Trace elements, though necessitated in minuscule quantities, have emerged as potential modulators of CAA progression, yet their exact impact remains unclear.

View Article and Find Full Text PDF

This study assessed the optimum dietary vitamin B requirement of Pacific white shrimp, Penaeus vannamei, for growth, feed efficiency, hemocyte counts, innate immunity, and ammonia stress resistance. Semi-purified experimental diets were prepared by adding vitamin B at 0.0, 0.

View Article and Find Full Text PDF

Advanced Applications of Vitamin B Complex in Plastic and Cosmetic Surgery: Mechanisms and Therapeutic Benefits.

Int J Vitam Nutr Res

August 2025

Department of Plastic and Cosmetic Center, The First Affiliated Hospital, Zhejiang University, 310003 Hangzhou, Zhejiang, China.

The vitamin B complex, a group of water-soluble vitamins, is essential for various metabolic and cellular processes and critical for achieving optimal surgical outcomes in plastic and cosmetic procedures. This review examines the mechanistic contributions of this complex at the cellular level, including any roles in mitochondrial bioenergetics, redox balance, gene regulation, and cellular repair mechanisms. Niacinamide, as a precursor to NAD⁺, enhances mitochondrial efficiency and facilitates energy production, supporting tissue regeneration.

View Article and Find Full Text PDF

Yes-associated protein (YAP) is a major downstream nuclear coactivator of the Hippo pathway and is activated during myocardial hypertrophy. Verteporfin, a YAP inhibitor, may serve as a potential treatment for myocardial hypertrophy. This study was aimed at exploring the role and underlying mechanisms of verteporfin in isoproterenol (ISO)-induced myocardial hypertrophy both in vivo and in vitro.

View Article and Find Full Text PDF

Gold/Prussian Blue-Based Nanocomposites with Dual Nanozyme Activities Exert a Synergistic Effect of Starvation Therapy and Sonodynamic Therapy in the Treatment of Liver Cancer.

Int J Nanomedicine

September 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Purpose: This study aimed to develop a composite nanozyme system (Au/PB-Ce6-HA) based on gold nanoparticles (AuNPs) and Prussian blue nanoparticles (PBNPs) to combat tumor hypoxia and insufficient endogenous hydrogen peroxide (HO) deficiency, thus enhancing the efficacy of sonodynamic therapy (SDT) and starvation therapy for liver cancer.

Methods: The Au/PB-Ce6-HA system was constructed by in situ embedding AuNPs on PBNPs, loading the sonosensitizer Chlorin e6 (Ce6), and surface-coating with thiolated hyaluronic acid (HA-SH). The system was evaluated both in vitro and in vivo to assess its ability to catalyze glucose to generate HO, decompose HO to produce oxygen, and generate highly toxic reactive oxygen species (ROS) under ultrasound irradiation.

View Article and Find Full Text PDF