98%
921
2 minutes
20
A fast and convenient method for on-line monitoring of the extraction of heavy metals from solid (environmental) matrixes was developed. By the incorporation of microcartridges filled with dried and pulverized solid samples into the conduits of a flow system and appropriate selection of the liquid flowing through the cartridge, information about the degree of leaching and in particular of the kinetics of the leaching process are obtained. The method was optimized for determination of different metals of environmental concern using in-line detection by FAAS and ICPMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac034752y | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:
Enhancing anodic hydroxyl (OH) coverage and suppressing leaching of active metal sites are essential for developing efficient and durable alkaline oxygen evolution reaction (OER) electrocatalysts. Herein, we propose amorphous cerium oxide (CeO)-mediated amorphous/crystalline heterointerface engineering to enhance OH coverage and leaching resistance in CeO/Mo-NiS for high-performance OER. CeO with an oxyphilic surface facilitates OH adsorption, promoting in situ reconstruction of NiS into nickel hydroxyl oxide (NiOOH) with significantly enhanced OH coverage and thereby accelerating OER kinetics.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
The disposal of municipal solid waste incineration fly ashes (MSWI-FA) is complicated by soluble chlorides, which increase the risk of heavy metals (HMs) leaching toxicity and hinder the further use of remediated MSWI-FA. In this study, the self-assembly potentiality of magnesium oxychloride cement (MOC) in geopolymerization was explored and utilized to enhance the solidification/stabilization (S/S) of the MSWI-FA. The MOC-self-assembled geopolymerization kinetics can be suitably described by the JMAK model.
View Article and Find Full Text PDFSmall Methods
September 2025
Research Center for Analysis and Measurement, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Platinum and non-precious metal (PtM) alloy multimetallic catalysts have been developed to address the kinetically sluggish oxygen reduction reaction (ORR) occurring at the cathodes of proton exchange membrane fuel cells (PEMFCs). However, these catalysts inevitably suffer from poor lot-to-lot consistency of chemical compositions and structures during production, and the transition metal leaching in practical applications. Thus, the development of high-performance monometallic Pt catalysts using innovative nanoarchitectures has become important to address the technical challenges that hinder the widespread deployment of the PEMFCs.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India. Electronic address:
This study presents the design and functional evaluation of a biodegradable nanocomposite film (CPZG) composed of chitosan, polyvinyl alcohol (PVA), zinc oxide nanoparticles (ZnONPs), and garlic extract (GE) for active fish packaging. The film was fabricated via solvent casting and characterized using FTIR, SEM, XPS, and EDX, confirming successful molecular-level integration and uniform dispersion of ZnONPs and phytochemicals. GC-MS profiling revealed key organosulfur compounds such as diallyl disulfide and allyl trisulfide, with evidence of both sustained release and long-term retention within the polymer matrix.
View Article and Find Full Text PDF