Publications by authors named "Yunzheng Du"

A critical prerequisite for translating circulating tumor cells (CTCs) detection technologies into clinical practice is achieving high-efficiency capture and non-destructive release of low-abundance CTCs in blood. In recent years, innovative designs and surface modification of bioinspired topological micro/nanostructured materials have provided efficient solutions to capture and release CTCs. Motivated by pollen morphology and multimodal regulation, this study designed pollen-inspired spiky topological magnetic nanoparticles (IP-GSMNs) based on dual-recognition interface and intelligent-response modulation for high-efficiency capture and non-destructive release of CTCs from peripheral whole blood.

View Article and Find Full Text PDF

At present, AIDS remains a significant global health issue that requires ongoing attention. Although there is no practical cure for AIDS, hemoadsorption can effectively remove the virus from the blood and may serve as a promising treatment strategy. In this research, cellulose acetate/metal-organic framework composite beads (CA/MIL-125) with interconnected macropores were first fabricated using a one-step phase inversion method and then applied as a viral hemoadsorbent for the treatment of AIDS.

View Article and Find Full Text PDF
Article Synopsis
  • New viral infections are spreading rapidly, presenting challenges due to high variability and drug resistance, leading to a significant public health crisis.
  • This study explores a novel method using metal-organic framework (MOF)-polymer beads to adsorb and remove viruses, specifically showing over 99.93% efficiency in capturing HIV from the blood.
  • The developed adsorbent (CNC/MIL-53) demonstrates low toxicity and effective anticoagulant properties, presenting a promising approach to treat viral infections and potentially mitigate future epidemics.
View Article and Find Full Text PDF

As artificial receptors for protein recognition, epitope-imprinted polymers combined with fluorescence sensing based on quantum dots (QDs) can be potentially used for biological analysis and disease diagnosis. However, the usual way for fabrication of QD sensors through unoriented epitope imprinting is confronted with the problems of disordered imprinting sites and low template utilization. In this context, a facile and efficient oriented epitope surface imprinting was put forward based on immobilization of the epitope templates via thiol-disulfide exchange reactions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on improving the removal of urea, which can lead to renal diseases if it accumulates excessively, by developing a composite system called MCC@UiO/U that combines urease and a metal-organic framework.
  • - MCC@UiO/U achieves impressive urea removal efficiency, reaching a clearance rate of over 80% and effectively clearing urea from renal patients' peritoneal dialyzate within 2 hours, with a capacity of up to 1500 mg/g.
  • - The new composite shows excellent bioactivity, maintaining its performance even after 5 usage cycles, indicating strong stability and biocompatibility, which could lead to innovative clinical applications for kidney disease treatment.
View Article and Find Full Text PDF

Selective removal of ultra-high low-density lipoprotein (LDL) from the blood of hyperlipemia patients using hemoperfusion is considered an efficient method to prevent the deterioration of atherosclerotic cardiovascular disease. Based on the exceptional structure-function properties of multistimulus-responsive materials, we developed a magnetic photorenewable nanoadsorbent (FeO@SiO@Azo-COOH) with outstanding selectivity and regenerative characteristics, featuring functionalized azobenzene as the ligand. The dual-stimulus response endowed FeO@SiO@Azo-COOH with rapid separation and photoregenerative properties.

View Article and Find Full Text PDF

The use of hemoperfusion adsorbents for the removal of bilirubin in patients with liver failure has become a critical treatment. However, the insufficient clearance of bilirubin and the possibility of bacterial infection during hemoperfusion limit the application. In this work, we designed a novel antibacterial bilirubin adsorbent (PSVT) through the suspension polymerization reaction between double-bond functionalized TiO nanoparticles and styrene.

View Article and Find Full Text PDF

As a biomarker of hepatocellular carcinoma (HCC) biopsy, circulating tumor cells (CTCs) are often used in the diagnosis of cancer and treatment guidance. For CTCs detection, immuno-magnetic nanoparticles (IMNs) are one of the most commonly used platforms. However, the nonspecific adsorption of proteins and non-tumor cells weakens the performance of IMNs to capture CTCs.

View Article and Find Full Text PDF

The elevated concentration of low-density lipoprotein (LDL) is recognized as a leading factor of hyperlipidemia (HLP), and selective adsorption of serum LDL is regarded as a practical therapy. Based on the superior structure-function characteristics of stimuli-responsive materials, a photorenewable nanoadsorbent (SiO@Azo@Gly) with high selectivity and reusability was developed using azobenzene as the functional ligand. Its principle was certified by the preparation of silicon nanoparticles with atom transfer radical polymerization (ATRP)-initiating groups via a sol-gel reaction and their subsequent grafting of azobenzene polymer brushes by surface-initiated ATRP, followed by modification with glycine.

View Article and Find Full Text PDF

Removal of low-density lipoprotein (LDL) from hyperlipemia patients' blood represents an effective approach to prevent the progression of atherosclerotic cardiovascular disease. Based on the LDL structural characteristics and intermolecular interactions, a tailored nano-adsorbent (FeO@SiO@PAA-PE) was prepared aimed at the removal of LDL from hyperlipemia serum with high selectivity. The core-shell structured magnetic nanoparticles were embedded in an amphiphilic layer composed of hydrophilic poly(acrylic acid) and lipophilic phospholipids to provide multifunctional binding for LDL particles.

View Article and Find Full Text PDF

Immunomagnetic nanoparticles (IMNs) have been widely developed as a detection tool to isolate rare circulating tumor cells (CTCs) from whole blood as a potential method for early cancer diagnosis, metastasis examination, and treatment guidance. However, a spontaneous interaction between nanoparticles and proteins results in the formation of a protein corona that reduces the performance of IMNs when they enter body fluids. To address this issue, the protein corona was precoated onto magnetic nanoparticles (C-MNs), and then their surfaces were conjugated with an immuno-antibody.

View Article and Find Full Text PDF

Lowering of low-density lipoprotein (LDL) levels in blood of patients with hyperlipidaemia can effectively prevent the progression of atherosclerosis and coronary heart disease. The present study demonstrated a facile synthesis strategy to prepare biomembrane-mimetic LDL adsorbent (PVA@COOH-PE) via directional immobilization of phospholipid onto macro-porous cross-linked poly(vinyl alcohol) spheres. The binding between the prepared adsorbent and LDL particles simulates the cytosolic lipid droplets to form a lipid-packing structure.

View Article and Find Full Text PDF

Highly efficient removal of bilirubin from whole blood directly by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity, poor mechanical strength and low biocompatibility of adsorbents. In this work, a new class of nanocomposite adsorbents was constructed through an inorganic-organic co-crosslinked nanocomposite network between vinyltriethoxysilane (VTES)-functionalized hydroxyapatite nanoparticles (V-Hap) and non-ionic styrene-divinylbenzene (PS-DVB) resins (PS-DVB/V-Hap) using suspension polymerization. Notably, our adsorbent demonstrated substantially improved mechanical performance compared to the pure polymer, with the hardness and modulus increasing by nearly 3 and 2.

View Article and Find Full Text PDF

The cytokine network of tumour microenvironment (TME) plays an important role in cancer growth and progression. The current work aims to provide a new strategy for cancer therapy based on the targeted regulation of cytokines in the TME. Here, heparin-coupled polyvinyl alcohol (PVA-H) microspheres have been developed as an adsorbent for selectively remove tumour-induced immunosuppressive cytokines, such as vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), but not tumour necrosis factor-alpha (TNF-α) which has an immune-stimulating effect and can inhibit tumour growth.

View Article and Find Full Text PDF