98%
921
2 minutes
20
Selective removal of ultra-high low-density lipoprotein (LDL) from the blood of hyperlipemia patients using hemoperfusion is considered an efficient method to prevent the deterioration of atherosclerotic cardiovascular disease. Based on the exceptional structure-function properties of multistimulus-responsive materials, we developed a magnetic photorenewable nanoadsorbent (FeO@SiO@Azo-COOH) with outstanding selectivity and regenerative characteristics, featuring functionalized azobenzene as the ligand. The dual-stimulus response endowed FeO@SiO@Azo-COOH with rapid separation and photoregenerative properties. The adsorbent demonstrated excellent removal efficiency of LDL with an adsorption capacity of 15.06 mg/g, and highly repetitive adsorption performance (≥5 cycles) under irradiation. FeO@SiO@Azo-COOH also exhibited remarkable adsorption properties and selectivity in human serum, with adsorption capacities of 10.93, 21.26 and 9.80 mg/g for LDL, total cholesterol and triglycerides and only 0.77 mg/g for high-density lipoprotein (HDL), resulting in a 93% selective adsorption difference (LDL/HDL). Complete green regeneration of the nanoadsorbent was achieved through a simple regeneration process, maintaining a recovery rate of 99.4% after five regeneration experiments. By combining dynamic perfusion experiment with micromagnetic microfluidics, the LDL content decreased by 16.6%. Due to its superior adsorption capacity and regenerative properties, the dual stimulus-responsive nanosorbent is considered a potential hemoperfusion adsorbent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153342 | PMC |
http://dx.doi.org/10.1093/rb/rbae045 | DOI Listing |
Int J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.
Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Orthopedic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
Combining disinfection and bone regeneration in a one-step treatment is of significant clinical importance for chronic osteomyelitis, yet it remains a considerable challenge. To address this, we developed a dual stimulus-responsive decellularized extracellular matrix (dECM) cryogel (GC-dECM@CPN). The cryogel is composed of methacrylate gelatin (GelMA), carboxymethyl chitosan (CMCS), dECM, and temperature-sensitive phase-transition copper peroxide nanoparticles (CPNs).
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
Stimulus-responsive materials with reversible optical properties are of significant interest for the development of functional systems. Herein, we present the design and synthesis of diazaanthraquinodimethane (NAQD) derivatives incorporating -substituted 4-methoxyphenyl groups. A phenanthrene-fused scaffold was employed to balance conformational flexibility and redox stability, while an substitution strategy was used to control the molecular conformation and near-infrared (NIR) absorption.
View Article and Find Full Text PDFJ Funct Biomater
August 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system.
View Article and Find Full Text PDF