Publications by authors named "Yingtao Ding"

A tip-tilt-piston 3 × 3 electrothermal micromirror array (MMA) integrated with temperature field-based position sensors is designed and fabricated in this work. The size of the individual octagonal mirror plates is as large as 1.6 mm × 1.

View Article and Find Full Text PDF

Metasurfaces have garnered significant attention for their ability to manipulate light waves with multifunctional capabilities. Integrating independent wavefront controls within a single metasurface is essential to meet the growing demand for high-capacity, flat photonic devices. In this work, a versatile non-interleaved plasmonic metasurface platform utilizing quarter-wave plate meta-atoms for independent and simultaneous phase modulation of both co- and cross-polarized circularly polarized waves with subwavelength pixels, achieved by merging resonance and Pancharatnam-Berry phases is presented.

View Article and Find Full Text PDF

With the advancement of information technology in contemporary society, there is an increasing demand for the rapid processing of large amounts of data. Concurrently, traditional silicon-based integrated circuits have reached their performance limits due to the exacerbation of non-ideal effects. This necessitates further multifunctionalities and miniaturization of modern integrated circuits.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Microgrippers are essential for assembly and manipulation at the micro- and nano-scales, facilitating important applications in microelectronics, MEMS, and biomedical engineering. To guarantee the safe handling of delicate materials and micro-objects, a microgripper needs to be designed to operate with exceptional precision, rapid response, user-friendly operation, strong reliability, and low power consumption. In this study, we develop an electrothermal actuated microgripper with Al-SiO bimorphs as the primary structural element.

View Article and Find Full Text PDF

This paper presents the design, simulation, fabrication, and characterization of a novel large-scan-range electrothermal micromirror integrated with a pair of position sensors. Note that the micromirror and the sensors can be manufactured within a single MEMS process flow. Thanks to the precise control of the fabrication of the grid-based large-size Al/SiO bimorph actuators, the maximum piston displacement and optical scan angle of the micromirror reach 370 μm and 36° at only 6 Vdc, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Ultra-deep through-silicon vias (TSVs) are increasingly needed for integrating opto-electronic chiplets and MEMS devices, but creating effective barrier and seed layers can be challenging.
  • A new dual catalysis-based electroless plating technique improves the manufacturing process by treating polyimide surface layers to form dense Ni layers that act as both barrier and seed layers in deep TSVs.
  • The study successfully fabricated 530-μm-deep TSVs with excellent electrical properties, showcasing a cost-effective and efficient approach to producing ultra-deep TSVs for advanced packaging applications.
View Article and Find Full Text PDF
Article Synopsis
  • Standard silicon dioxide (SiO) used in electrothermal bimorph-based scanning micromirrors makes them fragile, limiting their applications.
  • To enhance durability, a polymer called photosensitive polyimide (PSPI) is introduced, replacing part of the SiO, which also simplifies the manufacturing process.
  • PSPI micromirrors showcased impressive performance with optical scan angles of ±19.6° and survived various tests, showing at least 4 times more robustness compared to traditional SiO micromirrors.
View Article and Find Full Text PDF

With the continuous scaling down of the modern integrated circuits, conventional metal-oxide-semiconductor field effect transistors are becoming inefficient due to various nonideal effects such as enhanced short-channel effects. Recently, emerging two-dimensional (2D) ferroelectrics have demonstrated their ability to maintain ferroelectricity at the nanoscale and have shown superior properties compared to three-dimensional ferroelectrics. Here, we report a ferroelectric field effect transistor composed of all 2D van der Waals (vdWs) heterostructures and provide a comprehensive study of the modulation of ferroelectric polarization on the carrier transport properties.

View Article and Find Full Text PDF

Optical metasurfaces have shown great potential for revolutionizing wave plates by enabling compact footprints and diversified functionalities. However, most metasurface wave plates (meta-WPs) are typically passive, featuring defined responses after fabrication, whereas dynamic meta-WPs have so far often been limited to ON and OFF states. Here, we design a dynamic dual-functional meta-WP based on judiciously designed low-loss SbSe meta-molecules at the telecom wavelength of 1.

View Article and Find Full Text PDF

Three-dimensional (3D) integration based on through-silicon-via (TSV) technology provides a solution to the miniaturization of electronic systems. In this paper, novel integrated passive devices (IPDs) including capacitor, inductor, and bandpass filter are designed by employing TSV structures. For lower manufacturing costs, polyimide (PI) liners are used in the TSVs.

View Article and Find Full Text PDF

High aspect ratio (HAR) through-silicon vias (TSVs) are in urgent need to achieve smaller keep-out zones (KOZs) and higher integration density for the miniaturization of high-performance three-dimensional (3D) integration of integrated circuits (IC), micro-electro-mechanical systems (MEMS), and other devices. In this study, HAR TSVs with a diameter of 11 μm and an aspect ratio of 10:1 are successfully fabricated in a low-cost process flow. Conformal polyimide (PI) liners are deposited using a vacuum-assisted spin coating technique, and the effects of spin coating time and speed on the deposition results are discussed.

View Article and Find Full Text PDF

The polarization of light is crucial for numerous optical applications ranging from quantum information processing to biomedical sensing due to the fundamental role of polarization as another intrinsic characteristic of optical waves, which is uncorrelated with the amplitude, phase, and frequency. However, conventional optical waveplates that enable polarization control are based on the accumulated retardation between two orthogonally polarized electric fields when light propagates a distance much larger than its wavelength in birefringent materials, resulting in bulky configurations and limited functionalities. Optical metasurfaces, ultrathin arrays of engineered meta-atoms, have attracted increasing attention owing to their unprecedented capabilities of manipulating light with surface-confined configurations and subwavelength spatial resolutions, thereby opening up new possibilities for revolutionizing bulky optical waveplates with ultrathin planar elements that feature compactness, integration compatibility, broadband operation bandwidths, and multiple functionalities.

View Article and Find Full Text PDF

In this Letter, we report an optically stimulated synaptic transistor based on / dots mixed-dimensional (MD) heterostructure, where the channel conductance shows a non-linear response to the optical stimuli. Paired-pulse facilitation is realized with the index above 200%, and the optical synaptic plasticity can be modulated by adjusting the amplitude, duration time, frequency, and power of light spikes. In addition, the long-term plasticity shows a gate-tunability, which can be attributed to the unique photoelectric coupling in / dots MD heterostructure.

View Article and Find Full Text PDF

Smart windows for sunlight control play an important role in modern green buildings. Electrically-controllable light microshutters provide a promising solution for smart windows. However, most of reported microshutters work under on/off binary mode.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI.

View Article and Find Full Text PDF

Recently, the concept of the difference and sum co-array (DSCa) has attracted much attention in array signal processing due to its high degree of freedom (DOF). In this paper, the DSCa of the nested array (NA) is analyzed and then an improved nested configuration known as the diff-sum nested array (DsNA) is proposed. We find and prove that the sum set for the NA contains all the elements in the difference set.

View Article and Find Full Text PDF

In this paper, we propose a vectorized noncircular MUSIC (VNCM) algorithm based on the concept of the coarray, which can construct the difference and sum (diff-sum) coarray, for direction finding of the noncircular (NC) quasi-stationary sources. Utilizing both the NC property and the concept of the Khatri-Rao product, the proposed method can be applied to not only the ULA but also sparse arrays. In addition, we utilize the quasi-stationary characteristic instead of the spatial smoothing method to solve the coherent issue generated by the Khatri-Rao product operation so that the available degree of freedom (DOF) of the constructed virtual array will not be reduced by half.

View Article and Find Full Text PDF

Micro-electro-mechanical system (MEMS) mirrors are widely used for optical modulation, attenuation, steering, switching and tracking. In most cases, MEMS mirrors are packaged in air, resulting in overshoot and ringing upon actuation. In this paper, an electrothermal bimorph MEMS mirror that does not generate overshoot in step response, even operating in air, is reported.

View Article and Find Full Text PDF

In this paper, an algorithm of direction finding is proposed in the presence of unknown mutual coupling. The preliminary direction of arrival (DOA) is estimated using the whole array for high resolution. Further refinement can then be conducted by estimating the angularly dependent coefficients (ADCs) with the subspace theory.

View Article and Find Full Text PDF

A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO3(-)) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO3(-) layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO3(-)-AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO3(-).

View Article and Find Full Text PDF

An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA = glycollic acid, phen = 1,10-phenathroline), was synthesized and its interactions with double-stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.

View Article and Find Full Text PDF