Three-dimensional (3D) dental imaging, such as cone-beam computed tomography (CBCT), is essential for diagnosing dental conditions but is limited by high costs, prolonged examination times, and increased radiation exposure. Additionally, standard CBCT lacks the ability to capture spectral X-ray information, which is crucial for distinguishing different dental materials. To address these issues, we propose a novel, to the best of our knowledge, low-cost, low-dose dental CT method, chromatic X-ray stationary intraoral computed tomography (S-IDECT), which integrates a multisource X-ray array with dual-energy CT technology.
View Article and Find Full Text PDFMultienergy x-ray imaging can provide additional substance information beyond morphology in conventional energy-integration imaging. The predominant approach, single photon counting, sets stringent requirements on low x-ray flux and signal discrimination and prolongs imaging time. Here, we report on the design of unipolar n-i-n perovskite detectors for multienergy x-ray imaging.
View Article and Find Full Text PDFTin-lead (Sn-Pb) mixed narrow band gap (NBG) perovskite solar cells (PSCs) hold promise for tandem photovoltaic applications due to their tunable bandgap (≈1.25 eV), but face challenges from rapid crystallization kinetics and operational instability. Conventional ammonium salt passivators improve efficiency but often compromise stability by introducing mobile ions.
View Article and Find Full Text PDFTraditional scintillators rely on rigid inorganic matrices with high- elements, whose mechanical inflexibility restricts applications in multiple scenarios. Developing an efficient scintillator that combines inorganic properties with flexibility is a desirable yet highly challenging goal. We pioneered an inorganic metafabric scintillator paradigm through self-sustained slip system engineering, transforming brittle all-inorganic scintillation materials into ductile textile architectures, yielding intrinsically conformally flexible scintillators that adhere seamlessly to complex, curved surfaces.
View Article and Find Full Text PDFThe relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites (MHPs) and their derivatives, which possess remarkable light yield and X-ray sensitivity. This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent (RL) light strategies, underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities. We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators, including light yield and response times.
View Article and Find Full Text PDFTransforming laboratory-scale perovskite solar cells to large-scale production will require uniform crystallization of the perovskite film. We designed a method to aid the crystallization process by generating well-defined three-dimensional (3D) laminar airflow over square meter-sized perovskite films using a customized 3D-printed structure. The resultant perovskite solar modules with areas of 0.
View Article and Find Full Text PDFPerovskite-organic tandem solar cells (TSCs) possess significant potential due to their unique features, such as orthogonal processing solvents, tunable bandgap, and infinite molecular designs. However, their device performance is often hindered by the limited series current density, which is constrained by the absorption of the rear organic solar cell (OSC). Here, a fine-grained sub-cell matching model has been developed that enables rapid screening of material combinations based on practical sub-cell device parameters.
View Article and Find Full Text PDFTraditional energy-integration X-ray imaging systems rely on total X-ray intensity for image contrast, ignoring energy-specific information. Recently developed multilayer stacked scintillators have enabled multispectral, large-area flat-panel X-ray imaging (FPXI), enhancing material discrimination capabilities. However, increased layering can lead to mutual excitation, which may affect the accurate discrimination of X-ray energy.
View Article and Find Full Text PDFHybrid organic-inorganic lead halide perovskite solar cells (PSCs) have rapidly emerged as a promising photovoltaic technology, with record efficiencies surpassing 26%, approaching the theoretical Shockley-Queisser limit. The advent of all-perovskite tandem solar cells (APTSCs), integrating Pb-based wide-bandgap (WBG) with mixed Sn-Pb narrow-bandgap (NBG) perovskites, presents a compelling pathway to surpass this limit. Despite recent innovations in hole transport layers (HTLs) that have significantly improved the efficiency and stability of lead-based PSCs, an effective HTL tailored for Sn-Pb NBG PSCs remains an unmet need.
View Article and Find Full Text PDFLead-free double perovskites (DPs) have become notable in white light emission applications due to the self-trapped exciton (STE) formation in the excited state. However, the mechanism understanding of the excited state dynamics and transport of STE remains ambiguous. Here, we demonstrate a new STE (Bi-STE) forming in tiny Bi-doped CsNaAgInCl, alongside its intrinsic STE (i-STE), resulting in the DPs photoluminescence quantum yield (PLQY) increasing to as high as >90%.
View Article and Find Full Text PDFWide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs.
View Article and Find Full Text PDFZero-dimensional (0D) organic metal halides comprising heterogeneous metal cations in single phase can achieve multiple luminous emissions enabling them toward multifunctional light-emitting applications. Herein, A novel single crystal of (CHN)SbMnCl containing two luminescent centers of [SbCl] pentahedrons and [MnCl] tetrahedrons is reported. The large distance between Sb-Sb, Mn-Mn, and Sb-Mn as well as theory calculation indicate negligible interaction between individual centers, thus endowing (CHN)SbMnCl with excitation-dependable and efficient luminescence.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2023
Conventional flat panel X-ray imaging (FPXI) employs a single scintillator for X-ray conversion, which lacks energy spectrum information. The recent innovation of employing multilayer scintillators offers a route for multispectral X-ray imaging. However, the principles guiding optimal multilayer scintillator configuration selection and quantitative analysis models remain largely unexplored.
View Article and Find Full Text PDFMetal halide crystals are bright but hygroscopic scintillator materials that are widely used in X-ray imaging and detectors. Precipitating them in situ in glass to form glass ceramics (GCs) scintillator offers an efficient avenue for large-scale preparation, high spatial resolution, and excellent stability. However, precipitating a high fraction of metal halide nanocrystals in glass to maintain high light yield remains a challenge.
View Article and Find Full Text PDFMetal halide perovskites are promising for next-generation flexible photodetectors owing to their low-temperature solution processability, mechanical flexibility, and excellent photoelectric properties. However, the defects and notorious ion migration in polycrystalline metal halide perovskites often lead to high and unstable dark current, thus deteriorating their detection limit and long-term operations. Here, we propose an electrical field modulation strategy to significantly reduce the dark current of metal halide perovskites-based flexible photodetector more than 1000 times (from ~5 nA to ~5 pA).
View Article and Find Full Text PDFJ Phys Chem Lett
July 2023
Traditional indirect flat-panel X-ray imaging (FPXI) uses inorganic scintillators with high-Z elements, which lack spectral information about X-ray photons and reflect only integrated X-ray intensity. To address this issue, we developed a stacked scintillator structure that combines organic and inorganic materials. This structure allows X-ray energies to be distinguished in a single shot by using a color or multispectral visible camera.
View Article and Find Full Text PDFWhether and how an electron-hole pair at the donor-acceptor interface separates from their mutual Coulombic interaction has been a long-standing question for both fundamental interests and optoelectronic applications. This question is particularly interesting but yet to be unraveled in the emerging mixed-dimensional organic/2D semiconductor excitonic heterostructures where the Coulomb interaction is poorly screened. Here, by tracking the characteristic electroabsorption (Stark effect) signal from separated charges using transient absorption spectroscopy, we directly follow the electron-hole pair separation process in a model organic/2D heterostructure, vanadium oxide phthalocyanine/monolayer MoS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Hole-transport materials (HTMs) play an important role in perovskite solar cells (PSCs) to enhance the power conversion efficiency (PCE). The innovation of HTMs can increase the hole extraction ability and reduce interfacial recombination. Three organic small molecule HTMs with 4-cyclopenta[2,1-:3,4-']dithiophene (CPDT) as the central unit was designed and synthesized, namely, CPDTE-MTP (with the 2-ethylhexyl substituent and diphenylamine derivative end-group), CPDT-MTP (with the hexyl substituent and diphenylamine derivative end-group), and CPDT-PMTP (with the hexyl substituent and triphenylamine derivative end-group), which can form bifunctional and robust hole transport layer (HTL) on ITO and is tolerable to subsequent solvent and thermal processing.
View Article and Find Full Text PDFReducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.
View Article and Find Full Text PDFAlthough perovskite X-ray detectors have revealed promising properties, their dark currents are usually hundreds of times larger than the practical requirements. Here, we report a detector architecture with a unique shunting electrode working as a blanking unit to suppress dark current, and it theoretically can be reduced to zero. We experimentally fabricate the dark-current-shunting X-ray detector, which exhibits a record-low dark current of 51.
View Article and Find Full Text PDFThe calculation method for light emission efficiency splits external quantum efficiency (EQE) into internal quantum efficiency (IQE) and light extraction efficiency (LEE) independently. Consequently, the IQE connected to Purcell factor and the LEE are calculated separately. This traditional method ignores the interplays between the Purcell factor and transmittance coefficient in spectral domain, which all strongly depend on emitting directions.
View Article and Find Full Text PDFAdv Mater
October 2022
Conventional energy-integration black-white X-ray imaging lacks the spectral information of X-ray photons. Although X-ray spectra (energy) can be distinguished by the photon-counting technique typically with CdZnTe detectors, it is very challenging to be applied to large-area flat-panel X-ray imaging (FPXI). Herein, multilayer stacked scintillators of different X-ray absorption capabilities and scintillation spectra are designed; in this scenario, the X-ray energy can be discriminated by detecting the emission spectra of each scintillator; therefore, multispectral X-ray imaging can be easily obtained by color or multispectral visible-light camera in a single shot of X-rays.
View Article and Find Full Text PDFHybrid heterostructures (HSs) comprising organic and two-dimensional (2D) monolayer semiconductors hold great promise for optoelectronic applications. So far, research efforts on organic/2D HSs have exclusively focused on coupling directly photoexcited singlets to monolayer semiconductors. It remains unexplored whether and how the optically dark triplets in organic semiconductors with intriguing properties (e.
View Article and Find Full Text PDFLead halide perovskites possess heavy elements and excellent mobility-lifetime (µτ) product, becoming desirable candidates for X-ray detectors. However, current perovskite photoconduction detectors (PCDs) with vertical geometry, where electronic signals and mobile ions share the same conduction path, are facing with extremely challenging ion-migration issue. Herein, a hybrid X-ray detector device structure, in which perovskite is vertically stacked onto an indium oxide (In O ) transistor with lateral transport geometry is designed, perovskite mainly acts as X-ray sensitizer to activate In O conduction channel, the actual electrical signal is conducted and collected in the lateral metal-oxide device.
View Article and Find Full Text PDFLead-free metal halide light-emitting diodes (LEDs) based on cesium copper halide (CsCuI) self-trapped-exciton (STE) emissions show great potential in lighting and color display applications, especially because of their nontoxicity and earth abundance. However, so far, the efficiency and color purity of CsCuI-based LEDs remain low. Here we demonstrate the emission of a CsCuI emitter can be enhanced and narrowed in a top-emitting microcavity device.
View Article and Find Full Text PDF