All-inorganic metafabric scintillators for conformally flexible and wearable x-ray detection and imaging.

Sci Adv

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traditional scintillators rely on rigid inorganic matrices with high- elements, whose mechanical inflexibility restricts applications in multiple scenarios. Developing an efficient scintillator that combines inorganic properties with flexibility is a desirable yet highly challenging goal. We pioneered an inorganic metafabric scintillator paradigm through self-sustained slip system engineering, transforming brittle all-inorganic scintillation materials into ductile textile architectures, yielding intrinsically conformally flexible scintillators that adhere seamlessly to complex, curved surfaces. The ultimate all-inorganic scintillator delivers near-unity quantum yield, with scintillation output more than 10 times higher than that of previous polymer matrix-based flexible scintillators. Using these metafabric scintillators, a multimodal x-ray interactive wearable platform (X-Wear) was developed, and their applications in body-centered flexible detection and imaging, mobile health, visual radiation monitoring, and breathable radiation shielding were successfully demonstrated. This work offers a previously undefined paradigm for a scintillator system design strategy that maintains the high performance of inorganic scintillators while adding the functionality of being conformally flexible and wearable of fabrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204163PMC
http://dx.doi.org/10.1126/sciadv.adv5537DOI Listing

Publication Analysis

Top Keywords

conformally flexible
12
metafabric scintillators
8
flexible wearable
8
detection imaging
8
flexible scintillators
8
scintillators
6
flexible
5
all-inorganic metafabric
4
scintillators conformally
4
wearable x-ray
4

Similar Publications

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Hair-Like Flexible Airflow Sensor for Large-Area Airflow Sensing.

Adv Sci (Weinh)

September 2025

School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510641, China.

Recently, flexible airflow sensors have attracted significant attention due to their impressive characteristics and capabilities for airflow sensing. However, the development of high-performance flexible airflow sensors capable of sensing airflow over large areas remains a challenge. In this work, it is proposed that a hair-like flexible airflow sensor, based on laser direct writing and electrostatic flocking, offers an efficient technology for airflow sensing.

View Article and Find Full Text PDF

A thermostable paraoxonase (S3wahi-PON) from sp. strain S3wahi was recently characterised and shown to possess stability across a broad temperature range. This study expands upon the initial biochemical characterisation of S3wahi-PON by investigating the structural determinants and conformational adaptability that contribute to its thermostability, using an integrated approach that combines biophysical techniques and molecular dynamics (MD) simulations across a temperature range of 10 °C to 90 °C.

View Article and Find Full Text PDF

In-silico modeling of SHLP6: A novel mitochondrial peptide controlling neurodegeneration and cellular aging.

Comput Biol Med

September 2025

Institute of Biotechnology, Department of Medical Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India. Electronic address:

Small humanin-like peptide-6 (SHLP6), is derived from the mitochondrial genome. The 3D structure of SHLP6 was evaluated using PEPstr, with homology modeling predicting a Cyt-C structure with a DOPE score of -645.717 and a GA341 score of 0.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable communication between individuals and computers or other assistive devices by decoding brain activity, thereby reconstructing speech and motor functions for patients with neurological disorders. This study presents a high-resolution micro-electrocorticography (µECoG) BCI based on a flexible, high-density µECoG electrode array, capable of chronically stable and real-time motor decoding. Leveraging micro-nano manufacturing technology, the µECoG BCI achieves a 64-fold increase in electrode density compared to conventional clinical electrode arrays, enhancing spatial resolution while featuring scalability.

View Article and Find Full Text PDF