IEEE Trans Neural Netw Learn Syst
August 2025
Adverse weather image restoration aims to recover clear images from those affected by weather conditions such as rain, haze, and snow. Different weather types affect images in distinct ways, necessitating specific degradation removal strategies, while content reconstruction generally benefits from a consistent approach since the underlying image structure remains largely consistent. Previous methods, despite their ability to handle multiple weather conditions within a single framework, often failed to adequately separate these two critical processes, thereby adversely affecting image restoration quality.
View Article and Find Full Text PDFIEEE Trans Image Process
March 2025
Current event-based video reconstruction methods, limited to the spatial domain, face challenges in decoupling brightness and structural information, leading to exposure distortion, and in efficiently acquiring non-local information without relying on computationally expensive Transformer models. To address these issues, we propose the Deep Spatial-Frequency Unfolding Reconstruction Network (DSFURNet), which explores and utilizes knowledge in the frequency domain for event-based video reconstruction. Specifically, we construct a variational model and propose three regularization terms: a brightness regularization term approximated by Fourier amplitudes, a structural regularization term approximated by Fourier phases, and an initialization regularization term that converts event representations into initial video frames.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
January 2025
With high temporal resolution, high dynamic range, and low latency, event cameras have made great progress in numerous low-level vision tasks. To help restore low-quality (LQ) video sequences, most existing event-based methods usually employ convolutional neural networks (CNNs) to extract sparse event features without considering the spatial sparse distribution or the temporal relation in neighboring events. It brings about insufficient use of spatial and temporal information from events.
View Article and Find Full Text PDFComput Biol Med
December 2023
Magnetic resonance imaging (MRI) Super-Resolution (SR) aims to obtain high resolution (HR) images with more detailed information for precise diagnosis and quantitative image analysis. Deep unfolding networks outperform general MRI SR reconstruction methods by providing better performance and improved interpretability, which enhance the trustworthiness required in clinical practice. Additionally, current SR reconstruction techniques often rely on a single contrast or a simple multi-contrast fusion mechanism, ignoring the complex relationships between different contrasts.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2024
Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2023
Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets.
View Article and Find Full Text PDFComput Biol Med
November 2022
Resting-state Magnetic resonance imaging-based parcellation aims to group the voxels/vertices non-invasively based on their connectivity profiles, which has achieved great success in understanding the fundamental organizational principles of the human brain. Given the substantial inter-individual variability, the increasing number of studies focus on individual parcellation. However, current methods perform individual parcellations independently or are based on the group prior, requiring expensive computational costs, precise parcel alignment, and extra group information.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2022
Connectivity-based brain region parcellation from functional magnetic resonance imaging (fMRI) data is complicated by heterogeneity among aged and diseased subjects, particularly when the data are spatially transformed to a common space. Here, we propose a group-guided functional brain region parcellation model capable of obtaining subregions from a target region with consistent connectivity profiles across multiple subjects, even when the fMRI signals are kept in their native spaces. The model is based on a joint constrained canonical correlation analysis (JC-CCA) method that achieves group-guided parcellation while allowing the data dimension of the parcellated regions for each subject to vary.
View Article and Find Full Text PDFSerial section transmission electron micro-scopy (ssTEM) reveals biological information at a scale of nanometer and plays an important role in the ultrastructural analysis. However, due to the imperfect preparation of biological samples, ssTEM images are usually degraded with various artifacts that greatly challenge the subsequent analysis and visualization. In this paper, we introduce a unified deep learning framework for ssTEM image restoration which addresses three main types of artifacts, i.
View Article and Find Full Text PDFExisting deep learning based de-raining approaches have resorted to the convolutional architectures. However, the intrinsic limitations of convolution, including local receptive fields and independence of input content, hinder the model's ability to capture long-range and complicated rainy artifacts. To overcome these limitations, we propose an effective and efficient transformer-based architecture for the image de-raining.
View Article and Find Full Text PDFFront Neurosci
February 2022
Autism Spectrum Disorder (ASD) is one common developmental disorder with great variations in symptoms and severity, making the diagnosis of ASD a challenging task. Existing deep learning models using brain connectivity features to classify ASD still suffer from degraded performance for multi-center data due to limited feature representation ability and insufficient interpretability. Given that Graph Convolutional Network (GCN) has demonstrated superiority in learning discriminative representations of brain connectivity networks, in this paper, we propose an invertible dynamic GCN model to identify ASD and investigate the alterations of connectivity patterns associated with the disease.
View Article and Find Full Text PDFThe goal of hyperspectral image fusion (HIF) is to reconstruct high spatial resolution hyperspectral images (HR-HSI) via fusing low spatial resolution hyperspectral images (LR-HSI) and high spatial resolution multispectral images (HR-MSI) without loss of spatial and spectral information. Most existing HIF methods are designed based on the assumption that the observation models are known, which is unrealistic in many scenarios. To address this blind HIF problem, we propose a deep learning-based method that optimizes the observation model and fusion processes iteratively and alternatively during the reconstruction to enforce bidirectional data consistency, which leads to better spatial and spectral accuracy.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2022
Deep learning-based methods have achieved notable progress in removing blocking artifacts caused by lossy JPEG compression on images. However, most deep learning-based methods handle this task by designing black-box network architectures to directly learn the relationships between the compressed images and their clean versions. These network architectures are always lack of sufficient interpretability, which limits their further improvements in deblocking performance.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2021
Many computer vision tasks, such as monocular depth estimation and height estimation from a satellite orthophoto, have a common underlying goal, which is regression of dense continuous values for the pixels given a single image. We define them as dense continuous-value regression (DCR) tasks. Recent approaches based on deep convolutional neural networks significantly improve the performance of DCR tasks, particularly on pixelwise regression accuracy.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2021
We introduce a new deep detail network architecture with grouped multiscale dilated convolutions to sharpen images contain multiband spectral information. Specifically, our end-to-end network directly fuses low-resolution multispectral and panchromatic inputs to produce high-resolution multispectral results, which is the same goal of the pansharpening in remote sensing. The proposed network architecture is designed by utilizing our domain knowledge and considering the two aims of the pansharpening: spectral and spatial preservations.
View Article and Find Full Text PDFExisting deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2019
Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-consuming optimization, and "shallow" models with difficulties in encoding the patterns contained in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast CS-MRI reconstruction.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2017
We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2015
In this paper, a new probabilistic method for image enhancement is presented based on a simultaneous estimation of illumination and reflectance in the linear domain. We show that the linear domain model can better represent prior information for better estimation of reflectance and illumination than the logarithmic domain. A maximum a posteriori (MAP) formulation is employed with priors of both illumination and reflectance.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2014
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements.
View Article and Find Full Text PDF