A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Event-Based Video Reconstruction With Deep Spatial-Frequency Unfolding Network. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current event-based video reconstruction methods, limited to the spatial domain, face challenges in decoupling brightness and structural information, leading to exposure distortion, and in efficiently acquiring non-local information without relying on computationally expensive Transformer models. To address these issues, we propose the Deep Spatial-Frequency Unfolding Reconstruction Network (DSFURNet), which explores and utilizes knowledge in the frequency domain for event-based video reconstruction. Specifically, we construct a variational model and propose three regularization terms: a brightness regularization term approximated by Fourier amplitudes, a structural regularization term approximated by Fourier phases, and an initialization regularization term that converts event representations into initial video frames. Then, we design corresponding spatial-frequency domain approximation operators for each regularization term. Benefiting from the global nature of computations in the frequency domain, the designed approximation operators can integrate local spatial and global frequency information at a lower computational cost. Furthermore, we combine the learned knowledge of the three regularization terms and unfold the optimization algorithm into an iterative deep network. Through this approach, the pixel-level initialization regularization constraint and the frequency domain brightness and structural regularization constraints can continuously play a role during the testing process, achieving a gradual improvement in the quality of the reconstructed video frames. Compared to existing methods, our network significantly reduces the number of network parameters while improving evaluation metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2025.3550008DOI Listing

Publication Analysis

Top Keywords

regularization term
16
event-based video
12
video reconstruction
12
frequency domain
12
deep spatial-frequency
8
spatial-frequency unfolding
8
brightness structural
8
regularization
8
three regularization
8
regularization terms
8

Similar Publications