Publications by authors named "Xueling Dai"

As a significant global mental health concern, depression has complex pathogenesis that has not been fully elucidated. The cAMP-PKA-CREB signaling pathway plays a crucial role in the physiological activities of the central nervous system. In recent years, numerous studies have demonstrated a close association between this pathway and the occurrence, development, and treatment of depression.

View Article and Find Full Text PDF

Mounting evidence suggests that neuroinflammation is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Amyloid β peptide (Aβ) could recruit and activate microglia, leading to the generation of pro-inflammatory factors, and ultimately neuroinflammation. Chitooligosaccharide (COS) is widely recognized as anti-inflammation bioactive substance, though whether it exerts beneficial effect on AD is unclear.

View Article and Find Full Text PDF

Background: In recent years, depression has become a global public health concern, and one of the common concomitant symptoms are diminished sexual motivation and impaired sexual performance. The aim of this study was to investigate the potential effects of oligosaccharides (MOO) on depression and its concomitant symptom, sexual dysfunction.

Methods: Chronic unpredictable mild stress (CUMS)-induced depression model was constructed, and the effects of MOO on depression and sexual abilities were evaluated.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder with insidious onset and progressive development. There is an urgent need to find drugs that prevent and slow AD progression. We focus our attention on 3,6'-disinapoyl sucrose (DISS), an oligosaccharide with antidepressant and antioxidant activities.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a chronic, neurodegenerative disorder that affects the central nervous system and is found predominantly in elderly populations. As amyloid b protein (Ab) is one of the key players responsible for the pathogenesis of AD, we sought to investigate the protective effects of fisetin in an Ab1-42-induced rat model of AD. In this model, the protective effects of fisetin on learning and memory impairment induced by Ab1-42 were determined via the Morris water maze and passive avoidance test.

View Article and Find Full Text PDF

The aim of this study is to explore the effect and mechanism of 3,6'-disinapoylsucrose (DISS) on an Alzheimer's disease (AD) mice model induced by APPswe695 lentivirus (LV) and intraperitoneal injection of lipopolysaccharide (LPS). The results show that DISS improves cognitive ability, decreases the levels of IL-2, IL-6, IL-1β, and TNF-α, reduces the expression of NF-κB p65, and alleviates Aβ deposition and nerve cell damage. DISS can regulate tyrosine kinase B (TrkB)/brain-derived neurotrophic factor (BDNF) signaling in the hippocampus.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative disease of the central nervous system characterized by the progressive impairment of neural activity. Studies have shown that 3,6'-disinapoyl sucrose (DISS) can alleviate the pathological symptoms of AD through the activation of the cAMP/CREB/BDNF signaling pathway. However, the exact biochemical mechanisms of action of DISS are not clear.

View Article and Find Full Text PDF

Chitosan oligosaccharide (COS), hydrolyzed and deacetylated from chitosan, has been reported to possess varieties of biological activities. Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by cognitive decline and memory loss, where oxidative stress was reported to be an overwhelming cause of the occurrence of AD. We have previously reported that COS could significantly decrease cell death, ROS generation, and lipid peroxidation, though the potential mechanism was yet to be determined.

View Article and Find Full Text PDF

Background: Brain amyloid deposition is one of the main pathological characteristics of Alzheimer's disease (AD). Soluble oligomers formed during the process that causes β-amyloid (Aβ) to aggregate into plaques are considered to have major neurotoxicity. Currently, drug development for the treatment of Alzheimer's disease has encountered serious difficulties.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that damages health and welfare of the elderly, and there has been no effective therapy for AD until now. It has been proved that tanshinone IIA (tan IIA) could alleviate pathological symptoms of AD via improving non-amyloidogenic cleavage of amyloid precursor protein, decreasing the accumulations of p-tau and amyloid-β (Aβ), and so forth. However, the further biochemical mechanisms of tan IIA are not clear.

View Article and Find Full Text PDF

Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility.

View Article and Find Full Text PDF

Amyloid precursor protein (APP) proteolysis is essential for the production of β-amyloid peptides (Aβ) that form senile plaques in Alzheimer's disease (AD) brains. The β-site amyloid protein precursor cleaving enzyme 1 (BACE1) is the rate limiting enzyme in the generation of Aβ from APP, inhibition of BACE1 is thereby considered as an attractive strategy for anti-AD drug discovery. Chitosan oligosaccharides (COS) has been shown to possess various biological activities.

View Article and Find Full Text PDF

This study assessed the modulating effects of liquiritin against cognitive deficits, oxidative damage, and neuronal apoptosis induced by subsequent bilateral intrahippocampal injections of aggregated amyloid-β (Aβ). This study also explored the molecular mechanisms underlying the above phenomena. Liquiritin was orally administered to rats with Aβ-induced cognitive deficits for 2 weeks.

View Article and Find Full Text PDF

Alzheimer disease (AD), a central nervous system degenerative disease, is characterized by abnormal deposition of amyloid-β peptide (Aβ), neurofibrillary tangles formed by hyperphosphorylated tau and synaptic loss. It is widely accepted that Aβ is the chief culprit of AD. Aβ peptide is the cleavage product of amyloid-β precursor protein (APP).

View Article and Find Full Text PDF

Aim: The objective of the present study was two-fold: (i) to evaluate the modulating effects of chitosan oligosaccharides (COS) on cognitive deficits and (ii) to explore their underlying molecular mechanisms.

Methods: The Morris water maze and passive avoidance tests were used to determine the neuroprotective effects of COS on Aβ1-42-induced learning and memory impairments. Biochemical methods were then used to assess COS antioxidant activity in hippocampus, including effects on apoptosis (TUNEL assay) and changes in inflammatory mediators (immunohistochemistry).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by a large number of amyloid-β (Aβ) deposits in the brain. Therefore, inhibiting Aβ aggregation or destabilizing preformed aggregates could be a promising therapeutic target for halting/slowing the progression of AD. Chitosan oligosaccharides (COS) have previously been reported to exhibit antioxidant and neuroprotective effects.

View Article and Find Full Text PDF

Lutein is known to be a nonprovitamin A carotenoid found in broccoli and spinach. The aim of present study was to investigate whether lutein can protect brain against ischemic injury by reducing oxidative stress. Male ICR mice were randomly divided into five experimental groups: model group, sham group, lutein high, middle, and low-dose groups (30, 15, and 7.

View Article and Find Full Text PDF

Background: Capripox viruses are economically important pathogens in goat and sheep producing areas of the world, with specific focus on goat pox virus (GTPV), sheep pox virus (SPPV) and the Lumpy Skin Disease virus (LSDV). Clinically, sheep pox and goat pox have the same symptoms and cannot be distinguished serologically. This presents a real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Capripox outbreaks.

View Article and Find Full Text PDF

β-Amyloid peptide (Aβ), the major component of senile plaques in patients with Alzheimer's disease (AD), is believed to facilitate the progressive neurodegeneration that occurs in this disease. Mounting natural compounds are proved to be potential candidates for the prevention and treatment of AD. Chitosan oligosaccharides (COSs), the enzymatic hydrolysates of chitosan, have been reported to possess diverse biological activities.

View Article and Find Full Text PDF

We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid-β peptide (Aβ) in extracellular deposits known as senile plaques. The tyrosine residue (Tyr-10) is believed to be important in Aβ-induced neurotoxicity due to the formation of tyrosyl radicals. To reduce the likelihood of cross-linking, here we designed an Aβ-40 analogue (Aβ-40 Y10F) in which the tyrosine residue was substituted by a structurally similar residue, phenylalanine.

View Article and Find Full Text PDF

To investigate the protective effects of curcumin against amyloid-β (Aβ)-induced neuronal damage. Primary rat cortical neurons were cultured with different treatments of Aβ and curcumin. Neuronal morphologies, viability and damage were assessed.

View Article and Find Full Text PDF

Epigenetic modifications like DNA methylation and histone acetylation play an important role in a wide range of brain disorders. Histone deacetylases (HDACs) regulate the homeostasis of histone acetylation. Histone deacetylase inhibitors, which initially were used as anticancer drugs, are recently suggested to act as neuroprotectors by enhancing synaptic plasticity and learning and memory in a wide range of neurodegenerative and psychiatric disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD).

View Article and Find Full Text PDF

Our present study was conducted to investigate whether liquiritin (7-hydroxy-2-[4-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxyphenyl]-chroman-4-one, 1), an active component of Glycyrrhiza uralensis Fisch., exerts a neuroprotective effect against focal cerebral ischemia/reperfusion (I/R) in male Institute of Cancer Research (ICR) mice. On the establishment of mice with middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 22 h, liquiritin at the doses of 40, 20, and 10 mg/kg was administered before MCAO once a day intragastrically for a subsequent 3 days.

View Article and Find Full Text PDF