Publications by authors named "Xinglan Cao"

Genome-wide association studies (GWASs) encounter limitations from population structure and sample size, restricting their efficacy. Though meta-analysis mitigates these issues, its application in rice research remains limited. Here, we report a large-scale meta-analysis of six independent GWAS experiments in rice to mine genes for key agronomic traits.

View Article and Find Full Text PDF

Glycosylation, a prevalent post-translational modification in eukaryotic secreted and membrane-associated proteins, plays a pivotal role in diverse physiological and pathological processes. Although UDP-N-acetylglucosamine (UDP-GlcNAc) is essential for this modification, the specific glycosylation mechanisms during plant leaf senescence and defense responses remain poorly understood. In our research, we identified a novel rice mutant named rbb1 (resistance to blast and bacterial blight1), exhibiting broad-spectrum disease resistance.

View Article and Find Full Text PDF

Tandem repeats (TRs) are genomic regions that tandemly change in repeat number, which are often multiallelic. Their characteristics and contributions to gene expression and quantitative traits in rice are largely unknown. Here, we survey rice TR variations based on 231 genome assemblies and the rice pan-genome graph.

View Article and Find Full Text PDF

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice.

View Article and Find Full Text PDF

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection.

View Article and Find Full Text PDF
Article Synopsis
  • Gene expression is crucial for sessile plants to adapt to salinity stress, but our understanding of genetic variations linked to this response in natural germplasm is limited.
  • Through analyzing the Global Mini-Core Rice Collection, researchers discovered thousands of expression quantitative trait loci (eQTLs) related to gene expression under both normal and salt-stressed conditions.
  • They identified a key candidate gene, STG5, which helps maintain Na/K balance by regulating other gene family members, providing insights into genetic variants that affect gene expression during salinity stress and aiding future research on salt tolerance.
View Article and Find Full Text PDF

Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed.

View Article and Find Full Text PDF

Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000.

View Article and Find Full Text PDF