Rapid and accurate diagnostics are essential for controlling infectious diseases, especially in low-resource settings. To enable broad implementation, there is a pressing need for point-of-use sensors that offer high sensitivity, portability, and user-friendliness. Electrochemical technologies, namely bipolar electrode (BPE) sensors, are promising because of their sensitivity and simplicity.
View Article and Find Full Text PDFAs healthcare systems worldwide demand early disease detection and personalized medicine, electrochemical biosensors stand out as a promising technology to meet these demands due to their sensitivity, selectivity, and rapid response. Specifically, DNA-based electrochemical biosensors are versatile and have been used to identify biomarkers of various infectious diseases. However, there is a significant gap between laboratory-scale proof-of-concept systems and commercially viable technologies.
View Article and Find Full Text PDFThis study investigates the association between the Metabolic Score for Visceral Fat (METS-VF) and chronic kidney disease (CKD), assessing METS-VF as a potential predictor of CKD risk. Utilizing data from the 1999-2018 National Health and Nutrition Examination Survey (NHANES), this cross-sectional study included 24,387 adult participants. Multivariable logistic regression, restricted cubic spline models, and threshold effect analyses were employed to explore the relationship.
View Article and Find Full Text PDFChem Commun (Camb)
February 2024
Nucleic acids in blood are early indicators of disease that could be detected by point-of-care biosensors if sufficiently sensitive and facile sensors existed. Electrochemical hybridization assays are sensitive and specific but are limited to very short nucleic acids. We have developed a restriction enzyme-assisted electrochemical hybridization (REH) assay for improved nucleic acid detection.
View Article and Find Full Text PDFArsenic pollution is a global environmental concern. Arsenic-induced chronic liver injury and its irreversible outcomes, including liver cirrhosis and liver cancer, threaten the health of residents in arsenic-contaminated areas. Liver fibrosis is a reversible pathological stage in the progression of arsenic-induced chronic liver injury to cirrhosis and liver cancer.
View Article and Find Full Text PDFPersistent room temperature phosphorescent materials with unique mechanical properties and robust optical properties have great potential in flexible electronics and photonics. However, developing such materials remains a formidable challenge. Here, we present highly stretchable, lightweight, and multicolored persistent luminescence elastomers, produced by incorporating ionic room temperature phosphorescent polymers and polyvinyl alcohol into a polydimethylsiloxane matrix.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2023
Introduction: Diabetic kidney disease (DKD) is one of the complications of diabetes; however, the pathogenesis is not yet clear. A recent study has shown that senescence is associated with the course of DKD. In the present study, we explored whether senescent renal tubular cells promote renal tubulointerstitial fibrosis by secreting Sonic hedgehog (Shh) which mediates fibroblast activation and proliferation in DKD.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is one of the most serious complications of diabetes mellitus (DM) and the main cause of end-stage renal failure. However, the pathogenesis of DKD is complicated. In this study, we found that miR-124-3p plays a key role in regulating renal mitochondrial function and explored its possible mechanism in DKD progression by performing a series of in vitro and in vivo experiments.
View Article and Find Full Text PDFModification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface.
View Article and Find Full Text PDFPrevious studies have shown mitochondrial dysfunction in various acute kidney injuries and chronic kidney diseases. Lipoic acid exerts potent effects on oxidant stress and modulation of mitochondrial function in damaged organ. In this study we investigated whether alpha lipoamide (ALM), a derivative of lipoic acid, exerted a renal protective effect in a type 2 diabetes mellitus mouse model.
View Article and Find Full Text PDFMicroplastics are widely present in global ecosystems, threatening both marine and freshwater species. Given this problem, it is vital to research where land-based microplastics originate and how they are transmitted to receiving waters in urban agglomerations. Research results should inform systemic mitigation efforts to prevent future contamination.
View Article and Find Full Text PDFThe field of infectious disease diagnostics is burdened by inequality in access to healthcare resources. In particular, "point-of-care" (POC) diagnostics that can be utilized in non-laboratory, sub-optimal environments are appealing for disease control with limited resources. Electrochemical biosensors, which combine biorecognition elements with electrochemical readout to enable sensitive and specific sensing using inexpensive, simple equipment, are a major area of research for the development of POC diagnostics.
View Article and Find Full Text PDFTubulointerstitial fibrosis (TIF) is involved in the development of diabetic kidney disease (DKD). Transforming growth factor β1 (TGF-β1) is involved in the extensive fibrosis of renal tissue by facilitating the partial epithelial-mesenchymal transition (EMT), increasing the synthesis of extracellular matrix (ECM), inhibiting degradation, inducing apoptosis of renal parenchyma cells, and activating renal interstitial fibroblasts and inflammatory cells. Recent studies indicated that bone morphogenetic protein-7 (BMP-7) upregulated the expression of endogenous SnoN against renal TIF induced by TGF-β1 or hyperglycemia.
View Article and Find Full Text PDFAtorvastatin is a classical lipid-lowering drug. It has been reported to have renoprotective effects, such as reducing urinary protein excretion and extracellular matrix aggregation. The present study aimed to investigate the specific mechanism of action of Atorvastatin in type 1 diabetic mice (T1DM) in inhibiting renal tubular epithelial cell injury following treatment with high glucose and high fat.
View Article and Find Full Text PDFRenal interstitial fibrosis (RIF) is the common irreversible pathway by which chronic kidney disease (CKD) progresses to the end stage. The transforming growth factor-β (TGF-β)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is a common factor leading to inflammation-mediated RIF, but its downstream regulatory mechanism is still unclear. Bioinformatics analysis predicted that serum amyloid A protein 1 (SAA1) was one of the target genes for transcriptional activation of STAT3 signaling.
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2020
Objective: To investigate the expression of Stim1 in the kidneys of mice with lupus, and the effect of Stim1 on the progression of renal interstitial fibrosis.
Methods: Mice (MRL/lpr) with spontaneous lupus nephritis (LN) and normal control mice (C57/BL) were selected. Immunohistochemistry and Masson staining were used to determine the degree of renal interstitial fibrosis in kidney tissues.
Diabetic nephropathy (DN) commonly causes end-stage renal disease (ESRD). Increasing evidence indicates that abnormal miRNA expression is tightly associated with chronic kidney disease (CKD). This work aimed to investigate whether miR-27a can promote the occurrence of renal fibrosis in DN by suppressing the expression of secreted frizzled-related protein 1 (Sfrp1) to activate Wnt/β-catenin signalling.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
March 2020
Objective To investigate the effect of enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) on the development of renal tubular epithelial-mesenchymal transformation (EMT) and diabetic nephropathy (DN). Methods Mouse model of type 1 diabetic nephropathy (T1DN) was established by intraperitoneal injection of streptozotocin (STZ) (55 mg/kg) and randomly divided into normal control and diabetic group. The mice were killed, and their biochemical indexes (blood glucose, creatinine, microalbumin and total protein in urine) of blood and urine were recorded.
View Article and Find Full Text PDFMultiple pharmaceutical powder processes operate at stresses lower than utilized in typical lab-scale shear cell testing. To bridge this gap, we developed a method to determine intrinsic powder flow properties, in particular, flow function (FFc), under such low stresses. A simple, commercially-available flow-through-orifice device (Flodex™ apparatus) was selected.
View Article and Find Full Text PDFLife Sci
December 2019
Epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition in renal tubular epithelial cells are critical to diabetic nephropathy (DN) pathogenesis, but the underlying mechanisms remain undefined. Bone morphogenetic protein 7 (BMP-7) inhibits EMT and ECM accumulation in renal tubular epithelial cells cultured in presence of high glucose. Meanwhile, miRNA-21 (miR-21) downregulates Smad7, promoting EMT and ECM deposition.
View Article and Find Full Text PDFUnveiling the mechanisms that drive the pathological phenotypes of diabetic nephropathy (DN) could help develop new effective therapeutics for this ailment. Transforming growth factor-β1 (TGF-β1)/Smad3 signaling is aberrantly induced in DN, leading to elevated microRNA-21 (miR-21) expression and tissue fibrosis. Ski-related novel protein (SnoN) negatively regulates the TGF-β pathway, but the relationship between SnoN and miR-21 has not been described in the context of DN.
View Article and Find Full Text PDF