98%
921
2 minutes
20
As healthcare systems worldwide demand early disease detection and personalized medicine, electrochemical biosensors stand out as a promising technology to meet these demands due to their sensitivity, selectivity, and rapid response. Specifically, DNA-based electrochemical biosensors are versatile and have been used to identify biomarkers of various infectious diseases. However, there is a significant gap between laboratory-scale proof-of-concept systems and commercially viable technologies. Commercialization of such sensors faces many challenges, with one of the most important being the stability and shelf life of the immobilized DNA. Surface-associated DNA faces thermal degradation, structural changes, and oxidation of tethering thiol groups, which causes DNA stripping from the surface. Currently, technology to support the long-term storage of these sensors at ambient temperatures is limited. Here, we report a novel method to preserve DNA in electrochemical biosensors through the application of a protective coating of poly(vinyl alcohol) (PVA). We show that with our PVA coating, the shelf life of dried, DNA-functionalized electrodes at ambient temperature is a minimum of 2 months. We further demonstrate that the protective capabilities of PVA extend to temperatures as high as 65 °C and that the biological relevance of the assay is not impacted by the coating. Our simple approach to DNA protection supports our understanding of how the electrode interfaces with biomolecules and facilitates biosensor scaling and commercialization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306534 | PMC |
http://dx.doi.org/10.1021/acssensors.5c00937 | DOI Listing |
Food Res Int
November 2025
School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; Department of Food Science & Technology, School of Agriculture & Biology, Shanghai JiaoTong University, Shanghai 200240, China. Electronic address:
Umami is one of the five fundamental tastes perceived by individuals during food consumption. Umami substances are vital constituent in food with directly affecting taste profiles and food flavor characteristics, thereby significantly influencing consumer perception and satisfaction. Consequently, the development of effective evaluation methodologies for umami substances holds significance for ensuring food quality, enhancing pleasant food attributes, and fostering advancements within the food industry.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Nanobiology and Nanozymology Research Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India. Electronic address:
Biosensors are rapidly emerging as a key tool in animal health management, therefore, gaining a significant recognition in the global market. Wearable sensors, integrated with advanced biosensing technologies, provide highly specialized devices for measuring both individual and multiple physiological parameters of animals, as well as monitoring their environment. These sensors are not only precise and sensitive but also reliable, user-friendly, and capable of accelerating the monitoring process.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.
View Article and Find Full Text PDFMacromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDFACS Sens
September 2025
Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by cognitive decline and behavioral impairments, typically manifesting in the elderly and presenile population. With the rapid global aging trend, early diagnosis and treatment of AD have become increasingly urgent research priorities. The primary pathological features of AD include excessive accumulation of β-amyloid (Aβ) plaques, the formation of neurofibrillary tangles, and neuronal loss.
View Article and Find Full Text PDF