Publications by authors named "Tolbert Osire"

Stevioside, a natural high-intensity sweetener, is widely employed across the food, pharmaceutical, and daily chemical industries due to its intense sweetness and health benefits. However, traditional extraction and purification processes for steviol glycosides from are plagued by low efficiency, high energy consumption, substantial environmental impact, and inconsistent product quality. This study systematically optimized the extraction, decolorization, decontamination, and desalting processes to overcome these challenges.

View Article and Find Full Text PDF

The relationship between protein structure and function is intrinsically interconnected, as the structure of a protein directly determines its functional properties. To investigate the effects of temperature and pressure on protein function, this study employed ethyl carbamate (EC) hydrolase as a model food enzyme and conducted molecular dynamics (MD) simulations under varying temperature and pressure levels to elucidate its structure-function relationship. By systematically analyzing the dynamic changes in root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), hydrogen bonding, catalytic pocket conformation, and packing density under different temperature and pressure conditions, we revealed the structural adaptability of EC hydrolase.

View Article and Find Full Text PDF

Hydroxylated steroids are value-added products with diverse biological activities mediated by cytochrome P450 enzymes, however, few has been thoroughly characterized in fungi. This study introduces a rapid identification strategy for filamentous fungi P450 enzymes through transcriptome and bioinformatics analysis. Five novel enzymes (CYP68J5, CYP68L10, CYP68J3, CYP68N1 and CYP68N3) were identified and characterized in Saccharomyces cerevisiae or Aspergillus oryzae.

View Article and Find Full Text PDF

are widely used around the world, mainly in purging and removal of endogenous active substances, such as anthraquinone and its derivatives. However, the potential toxicity of anthraquinones to the liver, kidney, and intestinal limits the application of . In this study, we aimed at safe regulation of to degrade anthraquinones, boosting medicinal properties and reducing toxicity and potency with fermentation strains H1102 for fermentation were selected as the initial strain which was capable of producing high yields of functional pigment and low yields of hazardous citrinin.

View Article and Find Full Text PDF

High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality.

View Article and Find Full Text PDF

L-Theanine is a multifunctional nonprotein amino acid found naturally in tea leaves. It has been developed as a commercial product for a wide range of applications in the food, pharmaceutical, and healthcare industries. However, L-theanine production catalyzed by γ-glutamyl transpeptidase (GGT) is limited by the low catalytic efficiency and specificity of this class of enzymes.

View Article and Find Full Text PDF

Ethyl carbamate (EC) is mainly found in fermented foods and fermented alcoholic beverages, which could cause carcinogenic potential to humans. Reducing EC is one of the key research priorities to address security of fermented foods. Enzymatic degradation of EC with EC hydrolase in food is the most reliable and efficient method.

View Article and Find Full Text PDF

Cavities are created by hydrophobic interactions between residue side chain atoms during the folding of enzymes. Redesigning cavities can improve the thermostability and catalytic activity of the enzyme; however, the synergistic effect of cavities remains unclear. In this study, Rhizomucor miehei lipase (RML) was used as a model to explore volume fluctuation and spatial distribution changes of the internal cavities, which could reveal the roles of internal cavities in the thermostability and catalytic activity.

View Article and Find Full Text PDF

Protein-glutaminase plays a significant role in future food (e.g., plant-based meat) processing as a result of its ability to improve the solubility, foaming, emulsifying, and gel properties of plant-based proteins.

View Article and Find Full Text PDF

Serratia marcescens is a Gram-negative bacterium of the Enterobacteriaceae family that can produce numbers of biologically active secondary metabolites. However, our understanding of the regulatory mechanisms behind secondary metabolites biosynthesis in S. marcescens remains limited.

View Article and Find Full Text PDF

Background: Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock, such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability.

Results: This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C.

View Article and Find Full Text PDF

Transcription factors (TFs) perform a crucial function in the regulation of amino acids biosynthesis. Here, TFs involved in L-glutamate biosynthesis in Corynebacterium glutamicum were investigated. Compared to transcriptomic results of C.

View Article and Find Full Text PDF

Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation.

View Article and Find Full Text PDF

In Serratia marcescens JNB5-1, prodigiosin was highly produced at 30°C, but it was noticeably repressed at ≥37°C. Our initial results demonstrated that both the production and the stability of the -methyl transferase (PigF) and oxidoreductase (PigN) involved in the prodigiosin pathway in S. marcescens JNB5-1 sharply decreased at ≥37°C.

View Article and Find Full Text PDF

Riboflavin, an essential vitamin for animals, is used widely in the pharmaceutical industry and as a food and feed additive. The microbial synthesis of riboflavin requires a large amount of oxygen, which limits the industrial-scale production of the vitamin. In this study, a metabolic engineering strategy based on transcriptome analysis was identified as effective in increasing riboflavin production.

View Article and Find Full Text PDF

Inducible lysine decarboxylases (LDCs) are essential in various cellular processes of microorganisms and plants, especially under acid stress, which induces the expression of genes encoding LDCs. In this study, a novel LDC (SmcadA) was successfully expressed in , purified and characterized. The protein had an optimal pH of 6 and a temperature of 40 °C and phylogenetic analysis to determine the evolution of SmcadA, which revealed a close relation to sp.

View Article and Find Full Text PDF

Intermediates such as 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) have extensive clinical applications in the production of steroid pharmaceuticals. The present study explores the effect of two factors in the production of these intermediates in Mycobacterium neoaurum JC-12: the precursor, phytosterol and a molecule that increases AD/ADD solubility, hydroxypropyl-β-cyclodextrin (HP-β-CD). Differentially expressed proteins were separated and identified using 2D gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS).

View Article and Find Full Text PDF

Several approaches for efficient production of cadaverine, a bio-based diamine with broad industrial applications have been explored. Here, Serratia marcescens lysine decarboxylase (SmcadA) was expressed in E. coli; mild surfactants added in biotransformation reactions; the E.

View Article and Find Full Text PDF

Prodigiosin (PG), a red linear tripyrrole pigment normally secreted by , has received attention for its reported immunosuppressive, antimicrobial, and anticancer properties. Although several genes have been shown to be important for prodigiosin synthesis, information on the regulatory mechanisms behind this cellular process remains limited. In this work, we identified that the transcriptional regulator RcsB encoding gene () negatively controlled prodigiosin biosynthesis in Disruption of conferred a remarkably increased production of prodigiosin.

View Article and Find Full Text PDF

Prodigiosin (PG) is a typical secondary metabolite mainly produced by . CpxR protein is an OmpR family transcriptional regulator in Gram-negative bacteria. Firstly, it was found that insertion mutation of in JNB 5-1 by a transposon Tn5G increased the production of PG.

View Article and Find Full Text PDF

l-Proline takes a significant role in the pharmaceutical and chemical industries as well as graziery. Typical biosynthesis of l-proline is from l-glutamate, involving three enzyme reactions as well as a spontaneous cyclization. Alternatively, l-proline can be also synthesized in l-ornithine and/or l-arginine producing strains by an ornithine aminotransferase (OCD).

View Article and Find Full Text PDF

, a gram-negative bacterium, found in a wide range of ecological niches can produce several high-value products, including prodigiosin, althiomycin, and serratamolide. Among them, prodigiosin has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. However, the regulatory mechanisms behind prodigiosin synthesis in remains limited.

View Article and Find Full Text PDF

Prodigiosin, a secondary metabolite produced by , has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. However, information on the regulatory mechanism behind prodigiosin biosynthesis in remains limited. In this work, a prodigiosin-hyperproducing strain with the gene disrupted (ZK66) was selected from a collection of TnG transposon insertion mutants.

View Article and Find Full Text PDF

Neutral proteases have broad application as additives in modern laundry detergents and therefore, thermostability is an integral parameter for effective production of protein crystals. To improve thermostability, the contribution of individual residues of Bacillus cereus neutral protease was examined by site-directed mutagenesis. The Lys11Arg and Lys211Arg mutants clearly possessed improved thermostabilities (T were 63 and 61 °C respectively) compared to the wild-type (T was 60 °C).

View Article and Find Full Text PDF

Thermostability plays an important role in the application of L-asparaginase in the pharmaceutical and food industries. Understanding the key residues and structures that influence thermostability in L-asparaginase is necessary to obtain suitable L-asparaginase candidates. In this study, special residues and structures that altered thermostability in thermophilic L-asparaginase and non-thermophilic L-asparaginase II were identified.

View Article and Find Full Text PDF