98%
921
2 minutes
20
Transcription factors (TFs) perform a crucial function in the regulation of amino acids biosynthesis. Here, TFs involved in L-glutamate biosynthesis in Corynebacterium glutamicum were investigated. Compared to transcriptomic results of C. glutamicum 13032, 7 TFs regulated to glutamate biosynthesis were indentifed in G01 and E01. Among them, RosR was demonstrated to regulate L-glutamate metabolic network by binding to the promoters of glnA, pqo, ilvB, ilvN, ilvC, ldhA, odhA, dstr1, fas, argJ, ak and pta. Overexpression of RosR in G01 resulted in significantly decreased by-products yield and improved L-glutamate titer (130.6 g/L) and yield (0.541 g/g from glucose) in fed-batch fermentation. This study demonstrated the L-glutamate production improved by the expression of TFs in C. glutamicum, which provided a good reference for the transcriptional regulation engineering of strains for amino acid biosynthesis and suggested further metabolic engineering of C. glutamicum for L-glutamate production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.125945 | DOI Listing |
Adv Biochem Eng Biotechnol
September 2025
Institute of Process Engineering in Life Sciences, Electrobiotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
While bioprocesses using Escherichia coli, Corynebacterium glutamicum, various species of Bacillus, lactic acid bacteria, Clostridia, the yeasts Saccharomyces cerevisiae and Pichia pastoris, fungi such as Aspergillus niger, and Chinese hamster ovary cells are well established, the high level of microbial diversity has not yet been exploited industrially. However, the use of alternative organisms has the potential to significantly expand the process window of bioprocesses. These extensions include the use of alternative substrates (e.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China. Electronic address:
Chondroitin sulfate (CS), a biopolymer with critical applications in osteoarthritis treatment and biomedical sectors, faces production challenges due to low yields and high costs. This study established a high-yield chondroitin (the major precursor of CS) production platform in Corynebacterium glutamicum for the simultaneous utilization of glucose and xylose from corn straw hydrolysate. Firstly, through codon optimization of genes encoding chondroitin synthase (KfoC) and UDP-N-acetylglucosamine-4-epimerase (KfoA), combined with tailoring metabolic pathways and medium components for chondroitin synthesis, yielded the high-titer strain CgC25.
View Article and Find Full Text PDFbioRxiv
August 2025
Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France.
Bacterial cell morphogenesis is controlled by the synthesis and organization of peptidoglycan and driven by multi-protein complexes such as the divisome and elongasome. Here we investigate the role of the DivIVA homologue, Wag31, the elongasome scaffold essential for polar growth in . Conditional depletion of Wag31 results in viable but coccoid-shaped cells, showing that Wag31 is essential for rod shape maintenance.
View Article and Find Full Text PDFSynth Syst Biotechnol
December 2025
School of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China.
l-Homoserine is a valuable intermediate with broad applications in the food, pharmaceutical, and chemical industries. Although has been engineered for the efficient biosynthesis of l-homoserine, both production efficiency and glucose conversion remain suboptimal. In this study, an engineered strain capable of high-yield l-homoserine production from glucose was successfully developed.
View Article and Find Full Text PDFSynth Syst Biotechnol
December 2025
Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
Liquid-liquid phase separation (LLPS)-driven membraneless organelles (MLOs) have been employed to enhance metabolic efficiency in various microbial cell factories. However, their application in the industrial bacterium has not been explored. Here, we report the formation of liquid protein condensates in using the RGG domain of LAF-1.
View Article and Find Full Text PDF