Proc Natl Acad Sci U S A
July 2025
Land-use changes are reshaping the distribution of aboveground species worldwide. However, the impact of land-use changes on the distribution of soil organisms remains poorly understood. In particular, we lack a mechanistic understanding of the environmental factors reshaping the distribution of soil microbiota in response to global biological homogenization.
View Article and Find Full Text PDFThe taxonomy of crab spiders (Thomisidae) has been the focus of many reviews, adding new genera such as and while synonymising with , and describing many new species. A collection of crab spiders from Jambi Province (Sumatra, Indonesia) revealed further diversity, resulting in the description of a new genus, Dhiya'ulhaq & Benjamin, , and five new species: Dhiya'ulhaq & Benjamin, (♂♀), Dhiya'ulhaq & Benjamin, (♂♀), Dhiya'ulhaq & Benjamin, (♀), Dhiya'ulhaq & Benjamin, (♂♀), and Dhiya'ulhaq & Benjamin, (♂♀). Additionally, new records of Benjamin, 2013 (♂), Benjamin, 2017 (♂), Benjamin, 2016 (♂), Benjamin, 2017 (♂), and Thorell, 1891 (♂♀) are provided for Sumatra, as well as high-resolution images of Benjamin, 2016 (♂) and Simon, 1887 (♀).
View Article and Find Full Text PDFAnthropogenic activities impose multiple concurrent pressures on soils globally, but responses of soil microbes to multiple global change factors are poorly understood. Here, we apply 10 treatments (warming, drought, nitrogen deposition, salinity, heavy metal, microplastics, antibiotics, fungicides, herbicides and insecticides) individually and in combinations of 8 factors to soil samples, and monitor their bacterial and viral composition by metagenomic analysis. We recover 742 mostly unknown bacterial and 1865 viral Metagenome-Assembled Genomes (MAGs), and leverage them to describe microbial populations under different treatment conditions.
View Article and Find Full Text PDFEmerging evidence suggests that microbivory prevails in soil animal communities, yet the relative importance of bacteria, fungi and plants as basal resource energy channels across taxa and forest types remains unstudied. We developed a novel framework combining stable isotope analysis of essential amino acids (eAAs) and energy fluxes to quantify basal resource contributions and trophic positions of meso- and macrofauna detritivores (Collembola, Oribatida, Diplopoda, Isopoda, Lumbricidae) and predators (Mesostigmata, Chilopoda) in 48 forest sites of different management intensity across Germany. Fungal energy channelling dominated, with the highest energy fluxes and 73% fungal eAAs across forests and regions.
View Article and Find Full Text PDFForest ecosystem management requires the conservation of associated biodiversity. Enriching native forests with economically valuable conifer species provides economic gains and meets the increasing societal demand for timber but may threaten biodiversity. Soil sustains most of forest biodiversity, but the impact of changes in tree species composition, including native and non-native species, on soil invertebrates remains little studied.
View Article and Find Full Text PDFWorldwide tree diversity loss raises concerns about functional and energetic declines across trophic levels. In this study, we coupled 160 above- and belowground food webs, quantifying energy fluxes to microorganisms and invertebrates in a tree-mycorrhiza diversity experiment, to test how tree diversity affects fluxes of energy above and below the ground. The experiment differentiates three mycorrhizal type treatments: only AM tree species (with arbuscular mycorrhizae), only EcM tree species (with ectomycorrhizae; one, two, and four tree species), or mixtures of both AM and EcM tree species (AM+EcM; two and four tree species).
View Article and Find Full Text PDFThe global loss of biodiversity has motivated many studies that experimentally vary plant species richness and examine the consequences for ecosystem functioning. Such experiments generally show a positive relationship between above- and below-ground biodiversity and the functioning of terrestrial ecosystems. Moreover, this relationship tends to strengthen over time, seen as enhanced functioning of diverse plant communities and reduced functioning of low-diversity plant communities.
View Article and Find Full Text PDFThe elemental content of life is a key trait shaping ecology and evolution, yet organismal stoichiometry has largely been studied on a case-by-case basis. This limitation has hindered our ability to identify broad patterns and mechanisms across taxa and ecosystems. To address this, we present StoichLife, a global dataset of 28,049 records from 5,876 species spanning terrestrial, freshwater, and marine realms.
View Article and Find Full Text PDFUnderstanding ecological and evolutionary mechanisms that drive biodiversity patterns is important for comprehending biodiversity. Despite being critically important to the functioning of ecosystems, the mechanisms driving belowground biodiversity are little understood. We investigated the radiation and trait diversity of soil oribatid mites from two mountain ranges, that is, the Alps in Austria and Changbai Mountain in China, at similar latitude in the temperate zone differing in formation processes (orogenesis) and exposed to different climates.
View Article and Find Full Text PDFDetritus-based resources, that is, plant litter, are a major energy source for many living organisms and are considered to be a key determinant of primary production and nutrient cycling. Earthworms are among the most important macro-detritivores in terrestrial food webs and play a crucial role in facilitating these processes in terrestrial ecosystems. Yet, the influence of litter quality on earthworm nutrition, and consequently on soil food web dynamics, has remained largely underexplored, mainly for methodological reasons.
View Article and Find Full Text PDFThe relationship of plant diversity and several ecosystem functions strengthens over time. This suggests that the restructuring of biotic interactions in the process of a community's assembly and the associated changes in function differ between species-rich and species-poor communities. An important component of these changes is the feedback between plant and soil community history.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Trophic interactions in micro-food webs, such as those between nematodes and their bacterial prey, affect nitrogen cycling in soils, potentially changing nitrous oxide (NO) production and consumption. However, how nematode-mediated changes in soil bacterial community composition affect soil NO emissions is largely unknown. Here, microcosm experiments are performed with the bacterial feeding nematode Protorhabditis to explore the potential of nematodes in regulating microbial communities and thereby soil NO emissions.
View Article and Find Full Text PDFEarthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species.
View Article and Find Full Text PDFThe conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.
View Article and Find Full Text PDFBiodiversity experiments revealed that plant diversity loss can decrease ecosystem functions across trophic levels. To address why such biodiversity-function relationships strengthen over time, we established experimental mesocosms replicating a gradient in plant species richness across treatments of shared versus non-shared history of (1) the plant community and (2) the soil fauna community. After 4 months, we assessed the multitrophic functioning of soil fauna via biomass stocks and energy fluxes across the food webs.
View Article and Find Full Text PDFEnriching tree species-poor and less productive forests by introducing economically valuable species is a strategy proposed for achieving multipurpose forest management. However, empirical evidence from managed and mature forests on the impact of this enrichment on ecological (multidiversity and ecosystem multifunctionality) and economic dimensions remains scarce, particularly when nonnative species are used. Here, we propose and test a framework that integrates economic multifunctionality, encompassing timber production-oriented goals and resistance against disturbances, with multidiversity and ecosystem multifunctionality in European beech forest stands enriched with conifers.
View Article and Find Full Text PDFThe ongoing climate change calls for managing forest ecosystems in temperate regions toward more drought-resistant and climate-resilient stands. Yet ecological consequences of management options such as planting non-native tree species and mixing coniferous and deciduous tree species have been little studied, especially on soil animal communities, key in litter decomposition and pest control. Here, we investigated the taxonomic and trophic structure of soil macrofauna communities in five forest types including native European beech (), range-expanding Norway spruce () and non-native Douglas fir () as well as conifer-beech mixtures across loamy and sandy sites in northern Germany.
View Article and Find Full Text PDFChem Sci
September 2024
Springtails (Collembola) are important members of the soil mesofauna. They are small, often less than 1-2 mm in length. A typical escape response of most surface-living species is to jump, using their furca.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
A reliable phylogeny is crucial for understanding the evolution and radiation of animal taxa. Phylogenies based on morphological data may be misleading due to frequent convergent evolution of traits-a problem from which molecular phylogenies suffer less. This may be particularly relevant in oribatid mites, an ancient soil animal taxon with more than 11,000 species, where the classification of species into high-ranking taxa such as superfamilies is equivocal.
View Article and Find Full Text PDFSalt marshes represent a unique ecosystem at the marine-terrestrial boundary of shallow protected coastlines. Microarthropods form an essential component of soil food webs, but how they colonize new intertidal habitats is little understood. By establishing two experimental systems without animals, we investigated microarthropod colonization (1) at the seashore from the pioneer zone to the lower and upper salt marsh and (2) at the same tidal height on artificial islands 500 m from the seashore.
View Article and Find Full Text PDFSpringtails (Collembola), tiny hexapod arthropods, are abundant in the soil of most ecosystems, but our knowledge of their secondary metabolites is limited, in contrast to that of insects. In insects, the outer cuticle is usually covered by mixtures of long-chain hydrocarbons serving different functions, such as water regulation or chemical communication. In contrast, the knowledge of the epicuticular chemistry of springtails is scarce.
View Article and Find Full Text PDFHumans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China.
View Article and Find Full Text PDFTrends Ecol Evol
August 2024
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.
View Article and Find Full Text PDFForest soils are a critical component of terrestrial ecosystems and host a large number of animal decomposer species. One diverse and abundant decomposer taxon is oribatid mites (Acari: Oribatida), whose species composition varies with forest type and tree species composition. We used functional traits that indicate different niche dimensions, to infer assembly processes of oribatid mite communities in monocultures and mixed forests of native and introduced tree species.
View Article and Find Full Text PDF